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Rational Catalan Numbers

Forany 0 < kR < n with ged(k, n) =1, we define the rational Catalan
number Cy, ,_, as the number of Dyck paths in a k x (n — R) rectangle.
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Forany 0 < kR < n with ged(k, n) =1, we define the rational Catalan
number Cy, ,_, as the number of Dyck paths in a k x (n — R) rectangle.
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Proposition _
Forany 0 < kR < n with ged(k,n) =1,

1/n
Crn—k = n(k)'

When n = 2k + 1, we recover the classical Catalan numbers.



(k,n)-Deograms

A (k,n)-Deodhar Diagram (Deogram) is a filling of boxes of a

\

k x (n — k) rectangle with crossings, 77, and elbows, \ with
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\

k x (n — k) rectangle with crossings, 77, and elbows, \ with

1. Strand permutation equal to identity,
2. Exactly n — 1 elbows,

3. (Distinguished) No elbows after an odd number of crossings
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(k,n)-Deograms

A (k,n)-Deodhar Diagram (Deogram) is a filling of boxes of a

\

k x (n — k) rectangle with crossings, 77, and elbows, \ with

1. Strand permutation equal to identity,
2. Exactly n — 1 elbows,

3. (Distinguished) No elbows after an odd number of crossings
(from top-left).
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Example Non-example

Let Deoy , denote the set of (R, n)-Deograms.



Overview

Theorem (Galashin-Lam, '21)
For 0 < k < n with ged(k, n) = 1, Deoy, and Dyck,, , are

equinumerous.
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Theorem (Galashin-Lam, '21)
For 0 < k < n with ged(k, n) = 1, Deoy, and Dyck,, , are
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Theorem (M., '25+) -
For 0 < k < n with ged(k, n) = 1, we find a bijection Deoy, , — Dycky, ,.



Recurrence Motivation

Catalan Recurrence
Forn >0,
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i—1

Many bijections for Catalan objects are found recursively!



Recurrence Motivation

Catalan Recurrence
Forn >0,

n
Ch = Z CiaCpj-
i—1

Many bijections for Catalan objects are found recursively!

Proposition _
Forany 0 < R < n with ged(k,n) =1,

1/n
Con—t = n(i?)'

While we have a formula, we generally do not have a recurrence
relation.



Convex Catalan Numbers

Convex Sets . ) o
Let I be a collection of lattice points inside a k x (n — R) rectangle.

We call ' convex if it contains every lattice point of its convex hull

with the diagonal.
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Convex Catalan Numbers

Convex Sets . ) o
Let I be a collection of lattice points inside a k x (n — R) rectangle.

We call ' convex if it contains every lattice point of its convex hull

with the diagonal.
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Example Non-example

Convex Catalan Numbers _
For every convex I, define Cr = # Dyck(IN), the number of lattice

paths strictly avoiding I
J |l |l
Ll <Al

Example Non-example




Convex Recurrence

Lemma/Observation . . .
For every convex I, there exists a pair of points pr, rr € I such that

I":=TuU{pr,rr}is convex.



Convex Recurrence

Lemma/Observation . . .
For every convex I, there exists a pair of points pr, rr € I such that

I":=TuU{pr,rr}is convex.

This gives us a simple recurrence relation.

Dyck(T) = Dyck(l) - Dyck(l3) + Dyck(T")



Permutations to Bounded Affine Permutations

But we need a tool to help us communicate between Deograms and
Dyck paths.
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Permutations to Bounded Affine Permutations

But we need a tool to help us communicate between Deograms and
Dyck paths.

For f € S,, we can associate a bounded affine permutationf : Z — Z
to f.

123 456

We can find k, the height of the rectangle as = 37, (f(i) — i) = k.
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Resolving crossings.
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Inversion Multiset , . , .
We associate a lattice point for each inversion of f. The multiset I'(f)

contains a point v()ﬂ(i’j)) = (R,n — R) for each inversion (1, /), < J,
where f; is the cycle with i after resolving.



Positroid Catalan Numbers

Resolving crossings.

U9

Inversion Multiset , . . .
We associate a lattice point for each inversion of f. The multiset I'(f)

contains a point v()ﬂ(i’j)) = (R,n — R) for each inversion (1, /), < J,
where f; is the cycle with i after resolving.

Positroid Catalan Number
Define C; := # Dyck(I'(f)).
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Positroid Catalan Numbers

Resolving crossings.

D T
Inversion Multiset , . . .
We associate a lattice point for each inversion of f. The multiset I'(f)
contains a point () = (k, n — k) for each inversion (i, ), i < j,
where f; is the cycle with i after resolving.
Positroid Catalan Number
Define C; := # Dyck(I'(f)).
| | |
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Dyck(T(f)) =



f

i1
Sifsi

Dyck('(f)) = Dyck(I'(sifsi))



\\\\ B N\

sif = (Jﬂ)(fz) SfS

Dyck(r(f)) =Dyck(I'(f1)) - Dyck(I'(f2))+  Dyck(F(sifsi))



Dyck Path Recurrence

:f (f1)(f2) sifsi
Dyck(I'(f)) =Dyck((f1)) - Dyck(T(f2))+  Dyck(I'(sifsi))

The positroid Catalan numbers, ¢,
1. recover the rational Catalan numbers, and

2. have a recurrence relation.
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Recurrence Motivation
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Recurrence Motivation
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Recurrence Motivation
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Main Tool: Affine Deograms

Definition (M., 25+)
A (maximal) f-affine Deogram is a periodic filling of the space

between a path P with k up-steps and n — k right steps and its
vertical translate with:
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Definition (M., 25+)
A (maximal) f-affine Deogram is a periodic filling of the space
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vertical translate with:

1. Strand permutation equal to f € By,

2. (Distinguished) No elbows after an odd number of crossings,
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Main Tool: Affine Deograms

Definition (M., 25+)
A (maximal) f-affine Deogram is a periodic filling of the space

between a path P with k up-steps and n — k right steps and its
vertical translate with:

1. Strand permutation equal to f € By,
2. (Distinguished) No elbows after an odd number of crossings,

3. (Maximal) Exactly n — 1 elbows (inside a red region).
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We let AffDeor p denote the set of f-affine Deograms under P.

Remark ‘ . S
These are similar to Affine Pipe Dreams introduced by Snider in 2010.



We let AffDeor p denote the set of f-affine Deograms under P.

Remark . . S
These are similar to Affine Pipe Dreams introduced by Snider in 2010.

We have a bijection Deo, , — AffDeoy,  p, .
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Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper

3. Decoupling
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Box Addition/Removal

Motto: We change our path at index i and move the box up/down
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Box Addition/Removal

Motto: We change our path at index i and move the box up/down

The move By is why we need affine Deograms. It has no simple “lift”
to rectangular Deograms.
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We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
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3. Decoupling



Motto: We cross wires below and locally apply Yang-Baxter moves
until the crossing moves to the top of the path.
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Motto: We cross wires below and locally apply Yang-Baxter moves
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Motto: We cross wires below and locally apply Yang-Baxter moves
until the crossing moves to the top of the path.
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Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper

3. Decoupling



Let f = fif,...f- be a decomposition of f € B, , into cycles. Then,
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We color the wires according to which cycle they are in. We then
restrict ourselves to boxes with the same color.
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.
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i=1

We color the wires according to which cycle they are in. We then
restrict ourselves to boxes with the same color.
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Let f = fif>...f, be a decomposition of f € B, , into cycles. Then,

.
# AffDeof"s = | | # AffDeof"3 .

i=1

We color the wires according to which cycle they are in. We then
restrict ourselves to boxes with the same color.




Dyck Path Recurrence

Okay, what do we have so far?
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sif = (fw)(fz ,fsl

Dyck(r(f)) =Dyck(I'(f1)) - Dyck(I'(f2))+  Dyck(I'(sifs;))
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Affine Deogram Recurrence

We get the same recurrence for affine Deograms.
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f sif = (f)(f2) sifsi
AfDeol  =AffDeol™, - AfDeoT5t  AffDeol™ .,
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Affine Deogram Recurrence

We get the same recurrence for affine Deograms.

..An..b. ”71.A. 4.4a..b. ”+1A4. "'U..b. H+14.4
f sif = (f)(f2) sifsi
i+1 i+1 i+1
i+1 i+1 i+1
AffDeoy’s" =AffDeos'%p - AffDeog < p+ AffDeols s p
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Affine Deogram Recurrence

We get the same recurrence for affine Deograms.
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If (fW )(fZ Ifsl

i+1

i+1 i+1

AffDeof"s* =AffDeof! %, - AffDeof ¥+ AffDeols s p
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Full Recurrence Example
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Full Recurrence Example
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Full Recurrence Example
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Full Recurrence Example

1

Our resulting Dyck path
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Theorem Restated

To recap, we have sketched the proof of the following theorem.

Theorem (M., 25+) N
Forany 0 < R < n with ged(k,n) and f a repetition-free bounded
affine permutation, we have a bijection

Deo(f) — Dyck(T (f))-

22



BONUS: g, t-Rational Catalan Numbers

Rational Catalan Numbers: For 1 < k < n with ged(k,n) =1, the
number of Dyck paths inside a k x (n — R) rectangle is counted by

1/n
Cron—k = n(fe)'
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Rational Catalan Numbers: For 1 < k < n with ged(k,n) =1, the
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BONUS: g, t-Rational Catalan Numbers

Rational Catalan Numbers: For 1 < k < n with ged(k,n) =1, the
number of Dyck paths inside a k x (n — R) rectangle is counted by

1/n
Cron—k = n(fe)'
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BONUS: Geometric Motivation

Grassmannian

_ {kx n matrices of rank k}
N (row operations)

Gr(k, n; F) := {V C F" | dim(V) = k}
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BONUS: Geometric Motivation

Grassmannian

_ {kx n matrices of rank k}
N (row operations)

Gr(k, n; F) := {V C F" | dim(V) = k}

Theorem (Knutson-Lam-Speyer, 2013) -
For bounded affine permutations f, we have a stratification

Gr(k,n) =| |Ng,
f

into open positroid varieties.

24



BONUS: Polynomials

We have a unique “top cell” (largest dimension) open positroid
variety, denoted Mg .
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BONUS: Polynomials

We have a unique “top cell” (largest dimension) open positroid
variety, denoted Mg .

For ged(k, n) =1, we may write the mixed Hodge polynomial of M} ,
P(M;,:q,t) €N [q%,t%] as
P(My0: G5 t) = (7 +12)""Con(, 1).

Additionally, we have the point count as

. B . B n_q 1[N
#nkm([ﬁ‘q) = (g-1) 1Ck7n—k(Q)—(Q*1) 1[,,’](7[/?}61

Z (q o 1)#elbows(D)q#crossings(D)/z_

DéeDeoy,

These are due to (Deodhar, 1985) and (Galashin-Lam, 2021).
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Thank you!

T
+D+\
»+'+++

1 e
D

%

-2

25



