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(k, n)-Deograms

A (k, n)-Deodhar Diagram (Deogram) is a filling of boxes of a

k x (n — k) rectangle with crossings, T ", and elbows, \L with
1. strand permutation equal to identity,
2. exactly n — 1 elbows,

3. no elbows after an odd number of crossings (from top-left).
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Example Non-example

Let Deoy, , denote the set of (k, n)-Deograms.



Overview

Theorem (Galashin-Lam, '22)
For 0 < k < n with gcd(k, n) = 1, Deok , and Dyck, , are equinumerous.
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Theorem (M., '25+)
We find a bijection!



Bounded Affine Permutations

A (k, n)-bounded affine permutation is a function f : Z — Z such that:

i, ZI 1 ()7I—kl‘l

2.0 < f(i)<i—|—n,

3. f(i+n)=f(i
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Let By, , denote the set of (k, n)-bounded affine permutations.



Affine Deograms

An f-affine Deogram is a periodic filling of the space between a path P
with k up-steps and n — k right steps and its vertical translate with:

1. Strand permutation equal to f € By ,,
2. Exactly n — (#cycles of f) elbows (inside a red region),

3. No elbows after an odd number of crossings (from top-left).
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We let AffDeor p denote the set of f-affine Deograms under P.

Remark
These are similar to Affine Pipe Dreams introduced by Snider in 2010.



We let AffDeor p denote the set of f-affine Deograms under P.

Remark
These are similar to Affine Pipe Dreams introduced by Snider in 2010.

For some paths P, we have a bijection Deoy , — AffDeoy, , p.
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Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper
3. Decoupling



Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper
3. Decoupling



Box Addition/Removal

Motto: We change our path at index i and move the box up/down
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Box Addition/Removal

Motto: We change our path at index i and move the box up/down
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Box Addition/Removal

Motto: We change our path at index i and move the box up/down

4 5 6

| |
1 23

2
1|__I
0

| s 7

N
|

|5 6
|

H
.
o
.
-
.
L/

1 2 3
The move By is why we need affine Deograms. It has no simple “lift" to
rectangular Deograms.



Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper
3. Decoupling



Yang-Baxter Moves
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No bijection...



Yang-Baxter Moves
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No bijection...

Bijection if we require Condition 3. (No elbow after an odd number of
crossings) 9



Motto: We cross wires below and locally apply Yang-Baxter moves until

the crossing moves to the top of the path.
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Motto: We cross wires below and locally apply Yang-Baxter moves until
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Motto: We cross wires below and locally apply Yang-Baxter moves until

the crossing moves to the top of the path.
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Motto: We cross wires below and locally apply Yang-Baxter moves until
the crossing moves to the top of the path.
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Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper
3. Decoupling
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Decoupling

Let f = fif,...f, be a decomposition of f € By, into cycles. Then,

# AffDeoy p = [ | # AffDeoy p, .

i=1
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Decoupling

Let f = fif,...f, be a decomposition of f € By, into cycles. Then,

# AffDeoy p = [ | # AffDeoy p, .

i=1

We color the wires according to which cycle they are in. We then restrict
ourselves to boxes with the same color.
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Decoupling

Let f = fif,...f, be a decomposition of f € By, into cycles. Then,

r

# AffDeoy p = [ | # AffDeoy p, .
i=1
We color the wires according to which cycle they are in. We then restrict

ourselves to boxes with the same color.
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Full Recurrence Example
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Full Recurrence Example
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Full Recurrence Example
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Possible directions

Question
Can we make this bijection direct?
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Possible directions

Question
Can we make this bijection direct?

So far, yes for:
1. Catalan case, i.e., (k, k 4+ 1). (Galashin Lam, '23)
2. 2-row and 2-column case. (M., '25+)
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Possible directions

Dyck paths carry a lot of statistics.

Cen(g,t) = Z qarea(D)tdi“"(D)_
DeDyck, ,

Question
Can we find statistics on Deograms which makes the bijection

statistic-preserving? Can we bijectively prove these statistics are
symmetric?
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Questions?
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Geometric Background

For every f € By n, let Cr = x7(1%), the toric-equivariant Euler
characteristic of the positroid variety associated to . Then
Cr = # AffDeor p, when P is the first element of the Grassmannian

necklace for f.

This is also related to
1. Kazhdan-Lusztig R-polynomials,
2. HOMFLY polynomials,

3. Khovanov-Rozansky triply-graded link invariants.
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