Affine Deodhar Diagrams and Rational Dyck Paths

GSCC 2025

Thomas C. Martinez

UC Los Angeles

(k, n)-Deograms

- A (k, n)-Deodhar Diagram (**Deogram**) is a filling of boxes of a $k \times (n k)$ rectangle with crossings, \square , and elbows, \square , with
 - 1. strand permutation equal to identity,
 - 2. exactly n-1 elbows,
 - 3. no elbows after an odd number of crossings (from top-left).

1

(k, n)-Deograms

A (k, n)-Deodhar Diagram (**Deogram**) is a filling of boxes of a $k \times (n - k)$ rectangle with crossings, \square , and elbows, \square , with

- 1. strand permutation equal to identity,
- 2. exactly n-1 elbows,
- 3. no elbows after an odd number of crossings (from top-left).

Let $Deo_{k,n}$ denote the set of (k, n)-Deograms.

1

Overview

Theorem (Galashin-Lam, '22) For 0 < k < n with $\gcd(k,n) = 1$, $\mathsf{Deo}_{k,n}$ and $\mathsf{Dyck}_{k,n}$ are equinumerous.

Overview

Theorem (Galashin-Lam, '22) For 0 < k < n with $\gcd(k,n) = 1$, $\mathsf{Deo}_{k,n}$ and $\mathsf{Dyck}_{k,n}$ are equinumerous.

Theorem (M., '25+) We find a bijection!

Bounded Affine Permutations

A (k, n)-bounded affine permutation is a function $f : \mathbb{Z} \to \mathbb{Z}$ such that:

- 1. $\sum_{i=1}^{n} f(i) i = kn$,
- 2. $i \le f(i) < i + n$,
- 3. f(i + n) = f(i) + n.

Bounded Affine Permutations

A (k, n)-bounded affine permutation is a function $f : \mathbb{Z} \to \mathbb{Z}$ such that:

- 1. $\sum_{i=1}^{n} f(i) i = kn$,
- 2. $i \le f(i) < i + n$,
- 3. f(i + n) = f(i) + n.

Let $\mathbf{B}_{k,n}$ denote the set of (k,n)-bounded affine permutations.

Affine Deograms

An f-affine Deogram is a periodic filling of the space between a path P with k up-steps and n-k right steps and its vertical translate with:

- 1. Strand permutation equal to $f \in \mathbf{B}_{k,n}$,
- 2. Exactly n (# cycles of f) elbows (inside a red region),
- 3. No elbows after an odd number of crossings (from top-left).

We let AffDeo $_{f,P}$ denote the set of f-affine Deograms under P.

Remark

These are similar to Affine Pipe Dreams introduced by Snider in 2010.

We let $AffDeo_{f,P}$ denote the set of f-affine Deograms under P.

Remark

These are similar to Affine Pipe Dreams introduced by Snider in 2010.

For some paths P, we have a bijection $Deo_{k,n} \to AffDeo_{f_{k,n},P}$.

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Box Addition/Removal

Motto: We change our path at index i and move the box up/down

Box Addition/Removal

Motto: We change our path at index i and move the box up/down

Box Addition/Removal

Motto: We change our path at index i and move the box up/down

The move B_0 is why we need affine Deograms. It has no simple "lift" to rectangular Deograms.

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. **Zipper**
- 3. Decoupling

Yang-Baxter Moves

No bijection...

Yang-Baxter Moves

No bijection...

Bijection if we require Condition 3. (No elbow after an odd number of crossings)

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. **Decoupling**

Decoupling

Let $f = f_1 f_2 \dots f_r$ be a decomposition of $f \in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}.$$

Decoupling

Let $f=f_1f_2\dots f_r$ be a decomposition of $f\in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}.$$

We color the wires according to which cycle they are in. We then restrict ourselves to boxes with the same color.

Decoupling

Let $f = f_1 f_2 \dots f_r$ be a decomposition of $f \in \mathbf{B}_{k,n}$ into cycles. Then,

$$\# \mathsf{AffDeo}_{f,P} = \prod_{i=1}^r \# \mathsf{AffDeo}_{f_i,P_i}$$
.

We color the wires according to which cycle they are in. We then restrict ourselves to boxes with the same color.

Possible directions

QuestionCan we make this bijection direct?

Possible directions

Question

Can we make this bijection direct?

So far, yes for:

- 1. Catalan case, i.e., (k, k+1). (Galashin Lam, '23)
- 2. 2-row and 2-column case. (M., '25+)

Possible directions

Dyck paths carry a lot of statistics.

$$C_{k,n}(q,t) = \sum_{D \in \mathsf{Dyck}_{k,n}} q^{\mathsf{area}(D)} t^{\mathsf{dinv}(D)}.$$

Question

Can we find statistics on Deograms which makes the bijection statistic-preserving? Can we bijectively prove these statistics are symmetric?

Questions?

Geometric Background

For every $f \in \mathbf{B}_{k,n}$, let $C_f = \chi_T(\Pi_f^\circ)$, the toric-equivariant Euler characteristic of the positroid variety associated to f. Then $C_f = \# \operatorname{AffDeo}_{f,P}$, when P is the first element of the Grassmannian necklace for f.

This is also related to

- 1. Kazhdan-Lusztig R-polynomials,
- 2. HOMFLY polynomials,
- 3. Khovanov-Rozansky triply-graded link invariants.