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1 Transversality

We say amap F : M — N is transverse to a submanifold S = N provided
TF(p)S + DF(TPM) = Tp(p)N

for all p € M such that F(p) € S. When M is a submanifold of N, F is the inclusion map. The
big idea of transversality is that it allows us to obtain a useful generalization of the pre-image
theorem. We state the theorem

Theorem 1.1. If F : M — N is transverse to a (properly) embedded submanifold S = N, then F~1(S) ¢ M
is also a (properly) embedded submanifold. When F~1(S) # &, then

codim F71(S) = dim M — dim F~}(S) = dim N — dim S = codim S.

This here is not a proof but a good way to think about how you may arrive at the definition of
transversality naturally. This is taken from Guillemin and Pollack.

We have the the solutions of the equation F(m) = n form a smooth manifold, provided # is a
regular value of the map F : M — N. When can we say the same if S — N is a submanifold and
we conside the set of solutions of the relation F(m) € S§?

Whether F~1(S) is a manifold is a local matter. This allows us to consider the simpler case when
S is a single point. If n = F(m), then we may write S in a neighborhood of 7 as the zero set of a
collection of independent functions g, ..., g/, ¢ being the codimension of S in N. Then, near m,
the pre-image f~1(S) is the zero set of the functions g1 o F, ..., g, o F. Let ¢ denote the submersion
(g1, .., 8¢) defined around 7. To the map go F : W — R, we may apply the pre-image theorem:
(g o F)~1(0) is guaranteed to be a manifold when 0 is a regular value of g o F.

Although the map g is arbitrary, the condition that 0 is a regular value of g o F can be reformulated
in terms of F and N alone. Since (by chain rule),

d(goF)m = dgs(m) ©dfm,

the linear map d(g o F), : T(M) — R’ is surjective iff dg¢(m) carries the image of dF, onto R’
But dg ¢y : Tromy(N) — R’ is a surjective linear transformation whose kernel is Tt(m)(S). Thus,
dg ¢(m) carries a subspace of Ty (,,)(N) onto R’ precisely if that subspace spans the part of Ttm)(N)
which non-zero image. Reformulating this exactly gives that g o F is a submersion at m € F~1(S)
if and only if

image(dFm) + Tf(m)(s) = Tf(m)(N)r

which is the definition of transversality.
We now state some important results from Peterson’s Manifold Theory notes.

Corollary 1.1.1. Let G : M — N be transverse to an embedded submanifold S © N. Amap F : L — M
is transverse to F~1(S) ¢ M if and only if G o F is transverse to S.

Let M be a manifold with boundary. If F : M — N, then we denote the restriction to the boundary
as OF = Flaom-

Theorem 1.2. Let F : M — N, where M has boundary. If S = N has no boundary and both F and OF are
transverse to S, then F~1(S) is a submanifold with (F~1(S)) = F~1(S) n dM.
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This result allows us to begin classifying 1-dimensional manifolds.

Theorem 1.3. A connected one-dimensional manifold is diffeomorphic to either S' or R when it has no
boundary and either [0, 1] or [0, c0) when it does.

Corollary 1.3.1. A compact manifold with boundary admits no retracts onto the boundary.
Proof. Consider a map F : M — 0M such that F|op = idom. If p € M is a regular value, then

F~!(p) = M is a one-dimensional manifold with d(F~!(p)) = F~1(p) n @M = {p}. Thus, F~}(p) is
non-compact and consequently M must also be non-compact. O

Corollary 1.3.2 (Brouwer’s Fixed Point Theorem). Any map on the closed unit ball in Euclidean space
has a fixed point.

1.1 Thom’s Transversality Theorem

The previous section dealt with maps F : M" — N transverse to S © N. We now seek to answer
the question: given S < N and M", can we find maps F : M — N transverse to S < N?

Lemma 1.4. Let L be a manifold without boundary and F : M x L — N. If F and OF are transverse
toS < N, then F, : M — N and 0F, : M — N are transverse to S for almost all ¢ € L, where
Fy(x) = F(x,?).

This can be used to prove the Borsuk-Ulam theorem.

Theorem 1.5 (Borsuk-Ulam). The following statements are equivalent and true
(a) If f : S" — IR", then there exists x € S" such that f(x) = f(—x).

(b) If f : S" — R is odd then there exists x € S" such that f(x) = 0.

(c) Thereis no odd map f : S* — S"~1.

Theorem 1.6 (Thom). Any map f : M — N is homotopic to a nearby map that is transverse to S — N.
Moreover, if f is a section for 1 : N — M, i.e., wo f = idpy, then the homotopy H : [0,1] x M — N can
be chosen so that all of the maps H; : M — N are sections. Finally, if f is proper, then the homotopy is also
proper.

The proof is long but allows us to set up for Mod 2 Intersection theory. I don’t know if it is worth
knowing the full proof of Thom, but definitely the next corollaries are important.

Corollary 1.6.1. Let F : M — N. If 0F : M — N is transverse to S < N, then there is a homotopy
H:[0,1] x M — N such that H(t,x) = 0F(x) for all x € M and x — H(1,x) is transverse to S — N.

In particular, if two maps are homotopic and transverse to S, there there exists a homotopy be-
tween the maps that is also transverse to S.

Corollary 1.6.2. Any manifold admits a vector field that is transverse to the zero section p — 0, € T, M.
Corollary 1.6.3. Any map F : M — M is homotopic to a map G : M — M such that (idy;, G) : M —
M x M where x — (x, G(x)) is transverse to the diagonal A = {(p, p)| p € M}.

Proof. Just use that (idy, F) is a section of the projection 711 : M x M — M on to the first coordinate.
O



1.2 Problems

I could not find this definition in Petersen’s note but here is something that could appear.

Two manifolds K, L = M are said to intersect transversely if for every point p € K n L, we have
T,K+ T,L = T,M.

This means that K and L are transverse if and only if the inclusion map ¢ : K < M is transverse to
L in the usual sense, or vice versa for i/ : L — M. The idea is that if this is true, then K n L is also
a submanifold of M, and codim K n L = codim K + codim L, by applying Theorem 1.1.

Spring 2016, 2. Let X and Y be submanifolds of IR"”. Prove that, for almost every a € R", the
translate X + a intersects Y transversely.

Solution. Consider the map F : X x R" — R” where (x,a) — x + a. We claim F is transversal to
Y. If the image of F and Y do not intersect, then they are trivially transversal. Otherwise, suppose
we have F(x,a) € Y. then we note dF(, ;) : TxX x T,R" — T,IR" can be written as a block matrix
with identity on the bottom, since F is the identity on the second entry. Thus,

dF (0 (TeX x T,R") = T,R".

Thus, F is transverse to Y. By an above lemma, this implies the map F, : X — R” where x — x + 4,
or equivalently the inclusion map F, : X +4a4 — R" where x + 4 — x + a is transverse to Y for
almost all 2 € R". O

Fall 2016, 2 Let M — RN be a smooth k-dimensional submanifold. Prove that M can be im-
mersed into R%.

WLOG we may assume N > 2k, as if not we have an immersion M — R% via the inclusion
M — RN — R%*,

We show this inductively. Let f : M — R™ be an immersion where m > 2k. Define g : TM — R"
where g(x,v) = dfy(v). Recall that dim TM = 2k. Then since m > 2k we know every point in
TM is a critical point of g. By applying Sard’s theorem, we know that the image of g is a set of
measure zero in R”. Therefore, we can pick an a € R™ such that a ¢ g(TM) and a # 0. Let
7t be the projection of R™ onto the orthogonal complement of a, H,. we show the composition
mo f: M — H, is an immersion.

Suppose for contradiction that v # 0, and v € Ty M such that d(7r o f),(v) = 0. Note that since 7
is linear, d(7t o f)y = modfy by the chain rule. So 7t o dfy(v) = 0 which implies df,(v) = ta for
some t € R. If t = 0, then dfy(v) = 0, which is impossible as f is an immersion and v # 0. So
t # 0. Therefore, we must have g(x, %) =d fx(%) = a which is a contradiction since a ¢ ¢(TM). So
d(m o f) is injective implying 7t o f creates a immersion into an m — 1 dimensional subspace of R"™,
which is isomorphic to R” 1. n



2 Mod 2 Intersection

2.1 Definitions and First Results
Notes on this section are drawn from Petersen’s notes and from Guillemin & Pollack.

The setup for the section is as follows: we have a smooth map F : M — N for M compact
and N connected. Let S © N be a closed submanifold, assume F is transverse to S and that
F(eM)nS = &. Then, if dimM + dimS = dim N, the preimage F~}(S) = M is a compact
0-manifold, so a finite collection of points of M\0M.

Remark 2.1. We can get away with M non-compact as long as F is proper. In this case, we can take the
required homotopies in the proofs through proper maps.

Definition 2.1. In the setup of the previous paragraph, the mod 2 intersection number I>(F, S) is the
value #F71(S) (mod 2).

One important advantage of working mod 2 is that the intersection mod 2 is well-defined up to
homotopy, unlike the honest count #F~1(S).

Theorem 2.1. Let Fy,F; : M™ — N" be homotopic maps transverse to S"~™ < N, such that when
OM # & we have 0Fy = 0F;, neither boundary map intersects S, and the homotopy is fixed on M. Then
IL(Fy,S) = L(F,S).

Proof sketch. In the boundaryless case, consequences of Thom's transversality theorem produce a
homotopy H : [0,1] x M — N transverse to S, so that H(0,x) = Fo(x) and H(1,x) = F;(x). Then
H~1(S) is a compact one-manifold with boundary, so that ?H~!(S) has an even number of points.
But

OH™'(S) = H'(S) n {0,1} x int M = {0} x F;'(S) u {1} x F{(S),

so #0H1(S) = #F;'(S) + #F[!(S) is even, whence F;(S) and F; !(S) have the same parity and
SO Iz(F(),S) = 12(1:1, S)

When M has boundary, the product [0,1] x M is no longer a manifold with boundary, but Petersen
assures us we can still get a homotopy as above since 0Fy = JF; don’t intersect S. O

We can now define mod 2 intersection for maps F not necessarily transverse to S:

Definition 2.2. In our setup with F : M — N not necessarily transverse to S < N, we define I(F, S) to
be I(G, S) for any map G : M — N transverse to S and homotopic to F. If M has boundary we require OF
not to intersect S and the homotopy to restrict to OF on 0M for all times t € [0,1].

Example 2.1. The identity map idy : M — M is transverse to {x} < M with #idy; ({x}) = 1, so
Iz(idM, {x}) =1

Theorem 2.2. Let B! be a compact manifold with boundary 0B = M™ and f : M™ — N" with
S"~™ < N" a closed submanifold. If f = OF, where F : B — N, then I,(f,S) = 0.

Proof sketch. Use Thom's transversality theorem to obtain a map G : B — N such that G and 0G
are both transverse to S. Now G~1(S) is a compact one-manifold, so d(G1(S)) = (0G)~1(S) has
an even number of boundary points. Then 0 = I(9G, S) = L(f,S). O



Remark 2.2. This theorem recovers the result that a compact manifold never retracts onto its boundary: any
suchr : M — OM has idap = 0, so the theorem gives Io(0r,{x}) = O for any {x} € 0M, contradicting
Iz(idgM, {x}) =1.

Definition 2.3. The mod 2 Euler characteristic of a manifold M is x2(M) = L (X, My), where X is a
vector field on M and My the zero section. This is well-defined since every manifold admits a vector field
transverse to the zero section and all vector fields on M are homotopy equivalent.

Definition 2.4. The mod 2 Lefschetz number of F : M — M is defined by Ly(F) := L((idpm, F), D),
where A < M x M is the diagonal. This is well-defined since such an F is always homotopic to a G for
which (idy;, G) is transverse to A.

Proposition 2.1. We have x»(M) = Ly (idp).

2.2 The Winding Number and the Jordan-Brouwer Separation Theorem

The approach to this section is taken from section 2.5 in Guillemin & Pollack. We give statements
here; the proofs are exercises in G&P.

We require a couple more definitions.

Definition 2.5. Let F : M — N be a smooth map with M compact, N connected, and dim M = dim N.
Then the mod 2 degree of F is defined by deg,(F) = ,(F,{p}) for any p € N.

Note that there is a concrete description of deg, F: it is the number #F1(g) of preimages of a
regular value g € N, modulo 2. Moreover, since mod 2 degree is defined as an intersection number,
the results from the previous section apply; in particular, mod 2 degree is homotopy-invariant, and
the mod 2 degree of amap F : M — N equal to 0G for some G : B — Y with 0B = M is zero.

To prove Jordan-Brouwer, we track one final invariant:

Definition 2.6. Let F : M" — R"*! be a smooth map with M compact and connected. The mod 2
winding number of F with respect to a point z ¢ F(M) is given by

Wa(f,z) = deg (ig;:; M 5”—1) .

Thus the mod 2 winding number counts whether F(x) — z points in some generic direction an
even or odd number of times. We have the following theorem on winding numbers.

Theorem 2.3. Let X be a compact, connected manifold of dimension n — 1 and suppose we are given a
smooth map f : X — R". Suppose also that X = 0D for D a compact manifold with boundary, and that
we have a smooth map F : D — R" extending f (i.e. f = 0F). If z is a reqular value of F which is not in
the image of f, then F~1(z) is finite and Wy (f,z) = #F~'(z) (mod 2).

Theorem 2.4 (Jordan-Brouwer Separation Theorem). Let X < IR" be a compact, connected hypersur-
face (i.e. X has codimension 1). Then R™\X comsists of two connected open sets Dy, D1, and we can choose
the labeling so that D1 is a compact manifold with boundary X.

For a proof see Petersen’s notes. Part of the proof is outlined in the solution to Fall 2014, problem
2 below.



2.3 Problems

Spring 2018, 3 For 1 > 1, consider the subset X = CIP?" given by
XZ{[ZoizlI”-:Zzn]ECIPZ"‘Zn_H = - =12y 20}

(a) Show that X is a smooth submanifold.
(b) Calculate the mod 2 intersection number of X with itself.

Solution. (a) Define a map F : CIP" — CPP?" by [zg: -+ :2zu] — [20: - 124 : 0: -+ : 0]. We will
show that F is a smooth embedding with image X, which suffices to prove that X is a smooth
submanifold.

To see that F is smooth, note that we have a commutative diagram

Cn+1\{0} *I> C2n+1\{0}

| |

cr — Cp2"

where both maps labelled 7t are the projections, both surjective smooth submersions by the con-
struction of complex projective space as a manifold, and ¢ is the inclusion into the first n + 1 co-
ordinates of C*" + 1\{0}, which is clearly smooth. We can then pass to the quotients to determine
that F is smooth.

It remains to show F is an embedding with image X. That F has image X is clear. To show F is

an embedding, recall that embeddings are precisely proper injective immersions. We have that F

is proper because CIP" is compact, and F is seen to be injective by construction. To show F is an

immersion, one can write out the transition maps in real coordinates and check that the Jacobian

matrices have constant rank n. If fact, when you work in local coordinates (WLOG, suppose
Zn

zp # 0) then the map becomes a canonical projection, ie (%, L, %) — (i—é, e, %,0, ...,0).

To calculate the mod 2 intersection number of X with itself, we produce a map G : CIP" — CIP?*"
which is transverse to X and homotopic to F, then calculate the mod 2 intersection number of

G with X. The map G we will use sends [zp : ...z,] to [0 : 0 : -+ : z, : -+ & 2], where z,
occurs in position 1 + 1. Define a map H : CP" x [0,1] — CIP?" by sending ([zo : -+ : z4],t) to
[tzo @+ itz 12y (1 —1F)zy—q -1 (1 —1t)zp]. Then H(x,0) = G(x) and H(x,1) = G(x), and

H is smooth by another passing-to-quotients argument (noting that it is constant on projective
equivalence classes). So F and G are homotopic, and to show G is transverse to X we need to
show their tangent spaces add to T,CIP?" at every point of X n G(CPP"). The only point of this
intersectionis p = [0 :--- : 0:1:0:---: 0], where 1 is in position n + 1. Now calculate that
T,X < TPC]PZ” consists of vectors whose last 2 real coordinates are zero, while dG(Tjy.....0.;)CIP")
consists of those vectors whose first 2n real coordinates are zero. It follows that G is transverse to
X, and since the intersection X n G(CIP") has one point, the mod 2 intersection number is 1. O



Fall 2014,2 Let M" < IR" be a closed connected submanifold of dimension m.
(a) Show that R™\M™ is connected when m < n — 2.
(b) When m = n — 1, show that R"\M" is disconnected by showing that the mod 2 intersection
number I;(f, M) = 0 for all smooth maps f : St — R".

Solution. (a) We show that R"\M"™ is path connected when codim M > 2. Pick p, g € R"\M", and
let v : [0,1] — R" be the line segment from p to g in R”. By Thom's transversality theorem,
there is a smooth curve 7 : [0,1] — R” which is homotopic to 7 in a manner fixing the points
p,q, with 77 transverse to M. Since M has codimension at least 2 and the image of 7 is one-
dimensional, it is not possible for # to be transverse to M unless # and M do not intersect.
Thus 7 is a path from p to g not meeting M, and R"\M"™ is connected.

(b) First we prove the given claim about intersection numbers of maps f : S! — R". Assume
without loss of generality that f is transverse to M, let X denote the image of f, and pick
distinct points p,q € X\M. These two points give two distinct paths 71, y2 from p to g along
X. Since R" is simply connected, the paths 1 and 7, are homotopic by a homotopy fixing p, g.
Moreover 11, 7 are both transverse to M since X is. So I;(7y1, M) = I(7y2, M), and

L(f, M) = L(y1, M) + L(y2, M) = 2I(71, M) = 0.

Now we use this fact to prove R"\M is disconnected. Suppose that R"\M" is connected. As
M is a closed submanifold of dimension m, given some m € M, there exists some open subset
m € U < R" and a chart such that U n M = {(x1,...,%y,0)}. Then, there exists some € > 0
such that (x1,...,xm,€),(x1,...,x,, —€) € U for some choice of xy, ..., x,,. Denote these points
as p and g respectively. Considering the path 7, : [0,1] — R" where

Yo(t) = (x1,. .., xXm, (1 —2t)€),

we note that Ir(y9, M) = 1. However, as R"\M" is connected, there exists another path 7,
connecting p and g entirely contained in R"\M. Thus, I>(7y1, M) = 0. However, then the loop
¥ = Yo © 71 has intersection (v, M) = I(y0, M) + Ix(7y1, M) = 1, which is a contradiction, as
desired.

O]

3 Lefschetz Fixed Point Formula

In this section, M is a compact orientable manifold. We define the graph of f : M — M to be
I'(f) ={(x, f(x)) € M x M}, and the diagonal to be A = I'(idy) = {(x,x) € M x M}.

We define a map f to be a Lefschetz map if I'(f) A A. Via Thom (or a related corollary), we obtain
the following

Lemma 3.1. Every map f : X — X is homotopic to a Lefschetz map.

What does it mean for a map to be Lefschetz? Recalling the definition of transversality, we need
only consider the fixed points of f. The tangent space of I'(f) in TxM x Ty M is simply the graph
of the map dfy : TxM — T,M and the tangent space of the diagonal A is the diagonal A, of
TxM x TyM. Thus, I'(f) A& A at (x, x) if and only if

T(dfy) + Ay = TeM x TeM.
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As I'(dfy) and A, are vector subspaces of TyM x TyM, both of dimension dim M, they fill out
everything precisely if their intersection is 0. But I'(dfy) n Ay = 0 means that df, has no nonzero
fixed point (or in the language of linear algebra, df, has no eigenvector of eigenvalue +1).

We call the fixed point x a Lefschetz fixed point of f if df, has no nonzero fixed point. f is then a
Lefschetz map if and only if all fixed points are Lefschetz fixed points.

If x is a Lefschetz fixed point, we denote the orientation number of (x, x) in the intersection of
A NT(f)by Li(f) (called the local Lefschetz number of f at x). Thus, for Lefschetz maps,

L) = Y, L(f)
fl)=x

To find L,(f), we first note that x being a Lefschetz fixed point is equivalent to df, — I being an
isomorphism of Ty M. Thus, we get the following

Lemma 3.2. The local Lefschetz number Ly(f) at a Lefschetz fixed point x of f is +1 if the isomorphism
dfy — I preserves orientation on T, M and —1 if it reverses orientation. That is, the sign of Ly(f) equals the
sign of the determinant of df, — 1.

This result is one in which you should know. It is easy to remember and a common method of
proving a map has a fixed point.

Theorem 3.3. Let f : M — M be a smooth map on a compact orientable manifold. If L(f) # O then f has
a fixed point.

Proof. We prove the contrapositive. If f has no fixed points then A and I'(f) are trivially transversal
as they are disjoint. Thus, L(f) = I(I'(f),A) = 0. O

How can we calculate Lefschetz numbers? In some instances (See Spring 2013 #6), we can calculate
it outright. However in many instances, we use the formula below.

Theorem 3.4 (Lefschetz Trace Formula). If F : M — M, then

L(F) = I(T(F),A) = Y (=1)Ptr(F* : H"(M; Q) — H(M;Q)).

Note: there are many different statements of this formula, sometimes defined on homology. Here
is another formulation. It is almost important to note that this is always well-defined when either
HP(M;R) is free. When R is a field, this is guaranteed, but we may calculate this in integral
coefficients in the case where all homology groups are free (e.g. CP").

Theorem 3.5 (Lefschetz Trace Formula, v2). If F : M — M, then

L(F) = I(T(F),5) = Y (=1)Ptr(Fs : Hy(M;Q) — Hy(M;Q)).

This may be hard to calculate in general, but it is easy when p = 0 or p = dim M and M is compact,
connected, and oriented. In which case

tr(F* : H'(M; Q) —» H(M;Q)) =1,
tr(F* : H'(M; Q) — H"(M;Q)) = degF.

This formula implies Brouwer’s Fixed point theorem almost instantly.
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3.1 Problems

Spring 2015, 4 Consider a smooth map f : RP" — RP".
(a) When n is even show that F has a fixed point.
(b) When 7 is odd, give an example where F does not have a fixed point.

(a) To show F has a fixed point, we show that L(f) # 0. We show this via Lefschetz’s trace
formula. Note that, for n even,

Z k=0,
Hy(RP") =<7Z/2Z 1<k<nandkodd,
0 otherwise.

Thus, by the universal coefficient theorem, we have that
H(RP";Q) = Ext(H;_1(RP"),Q) ® Homz (Hy(RP"), Q).

However, we note that
Ext(Z,Q) =0

as Z is free and
Ext(Z/2Z,Q) = Q/2Q = Q/Q = 0
and 2Q = Q as Q is a field. Additionally, we note that

Homyz(Z/27Z,Q) =0
as we require 0 — 0 and 1 — b implies b + b = 0, thus we need b = 0. Finally, we note that
Homz(Z,Q) = Q

as each map is uniquely determined by the image of 1, as ¢(m) = m¢(1) for every m € Z.
Thus, H*(RP*; Q) = Q). So, any map F : RP" — RP", induces the identity map F* :
H°(RP";Q) — H°(RP"; Q). Thus, by the Lefschetz trace formula,

L(f) = tr(F* : H'(RP";Q) — H°(RP";Q)) =1 #0,

as desired.

(b) Consider the map F : RP" — IRP" where
[ag:ai: - :ap_1:a,)—[—ay:a0: - —ap:ap_1].

This map has no fixed points as F(x) is normal to x in local coordinates, and at least one
a; # 0.
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Fall 2015, 8 Show that CP" is not a covering space for any manifold other than itself when 7 is
even.

Note that, for n even,
Z 0<k<2n,keven,

0 otherwise.

Hy(CP") = {

We claim that every diffeomorphism f : CP" — CP" has a fixed point. Supposing this claim is
true, if p : CP> — X was a covering map, then every element of 711 (X) acts by diffeomorphisms,
and thus has a fixed point. However, the only element of the deck group which fixes any element
is the identity element. This implies 711 (X) is trivial, thus X = CP".

Let us now prove our claim. Let f : CP" — CP" a diffeomorphism be given. Then, by the
Lefschetz trace formula,

L(f) = Y (i : Z - 2).
i=0

As f is a diffeomorphism, the induced map on homology is an isomorphism and thus has trace
+1, thus, L(f) = >, +1, with an odd number of summands. Particularly L(f) # 0, and thus f has
a fixed point. .

4 Euler Characteristic

4.1 Definitions
Definition 4.1. x(M) = (X, Myp) = I(M, M).

Alternatively, we can define it as

(M) = Y (1),

n

where c,, is the number of n-cells in X.

This definition says that the Euler characteristic is the intersection number of any vector field X
and Mp. Recall that every smooth vector field is homotopic (this can be done by a straight line
homotopy H(t,p) = tXi(p) + (1 — t)Xo(p). We can note that in order to compute this intersec-
tion number we only need a orientation of T(TM) around the sub-manifold M, (which is the
image of the zero section). We can note that the tangent space at a point 0, € TM looks like
TM x TM in local coordinates (we can let the first be the M factor and the second represent the
TM factor). This space has a natural orientation which, given any basis of T,M, ey, ..., e, then
(e1,0),...,(em,0),(0,e1),...,(0,ey) is well defined and gives the same orientation.

Theorem 4.1. The Euler Characteristic can be also computed as

x(X) = (~1)"rank Hy(X) = > (~1)" rank H,(X; F)

n n

for any field F (eg. Q,R).

This fact comes from a pretty straightforward algebraic computation (since c, is the rank of C,;, we
can just write short exact sequences and compare the ranks of the terms). But most importantly,
this shows that Euler characteristic is a homotopy invariant.
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Proposition 4.1. For a closed oriented manifold M, L(idp) = x(M)

Proof. Proof Sketch: What is the idea of this well lets just write out L(idpy) = I((Idp, Idy), A) =
I(A, A) which is the intersection number of the diagonal with itself. We can now ‘cock your
head sideways” and note that the diagonal can be identified with the manifold M where TM
is identified by N(A) = {(—v,v),v € TM}. What we need to check is that this identification
preserves orientations which is does, we can see this by preforming elementary row operations
that don’t change the sign of the determinate on (eq,e1), ..., (em,em), (—e1,€1),...,(—em, em) to get
(e1,0),---(em,0),(0,e1),...,(0,e,) which is the standard basis. With this identification, we can
note that A becomes the zero section and we get I(My, My) = x(M) where X is just the zero
section which is a vector field. O

4.2 Useful facts
Corollary 4.1.1. For a closed manifold M of odd dimension m, we have L(idp) = x(M) = 0.

This comes from the fact that (eq,e1),..., (em, em), (e1, —€1),. .., (ém, —em) has the opposite orienta-
tion of that we gave N(A), and we could just as easily identified TM by v — (v, —v) and (—v, ).
Another way of seeing this: via Poincaré duality (in Z/2 coefficients as every manifold is Z/2-
orientable) since we know that M is a closed manifold there is an isomorphism between Hy(M)
and H,,_i(M) and we can note that when m is odd k and m — k have opposite parity so

m (m—-1)/2
x(M) = Y (=1)'Rank(H;(M)) = > (~1)'Rank(H;(M)) + (—1)" "Rank(H,,—;j(M)) = 0.
i=0 i=0

Theorem 4.2 (Also S16# 4 and S22 #9!). Suppose M is an odd-dimensional compact manifold. Then
X(0M) = 2x(M).

Proof. Take two copies M; and M, and glue them along the boundary to get the manifold N =
M; Uaom My. Notice that N satisfies the conditions of the 4.1.1, so x(N) = 0. Now it is enough to
show that x(N) = x(M1) + x(Ma) — x(0M) = 2x(M) — x(OM).

Notice that this is one of the properties in 4.3, but we will prove it more carefuly. For that, take
neighborhoods €; and e of M in M; and M, that can be deformation retracted onto M. Now,
apply the Mayer-Vietoris sequence for N = (M + €2) u (Mp + €2) :

L. n+1(N) - Hn(aM> - HH<M1)@HH(M2) -
— Hy(N) — Hy_1(0M) — Hy_1(M1) @ Hy_1(Ma) — . ..

Now it is only left to apply the following fact:
Lemma 4.3. In every finite exact sequence, the alternating sum of the ranks of the groups is equal to 0.
If we combine this with 4.1, we get the desired equality. O

Theorem 4.4 (Poincaré - Hopf). Let X be a vector field on the compact oriented manifold M with isolated
zeros x;. Suppose also that X is pointing in the normal direction along the boundary. Then

x(M) = Z index,, (X),
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where indexy,(X) is the degree of the map u : 0D — S"! defined by u(z) = X(z)/|X(z)| (D is a
neighborhood of x; in which x; is the only zero).

This means that to calculate the Euler characteristic x(M) of M, we can construct any smooth
vector field on this manifold and compute the sum of the indices of this vector field.
4.3 Computing Euler Characteristic

Proposition 4.2. The Euler characteristic of the common spaces are:

o x(S") =1+ (~1)".

o x(RP") = 1+(2—1)"
e X(CP")=n+1

* X(Mg) =2-2¢

* Xx(Ng) =2-g

e x(\V,,SH=1-m.
e x(T?) =0.

There are also a couple of properties that can help compute the Euler characteristic:
Proposition4.3. (a) x(X xY) = x(X) - x(Y).
(b) If p : X — X is an n-sheeted cover space, then

X(X) = nx(X).
(c) If X = A u B, where A and B are subcomplexes, then
X(X) = x(A) + x(B) — x(A n B).
(d) In particular, x(X vY) = x(X) + x(Y) — 1.

Proof. Might be good to know, since some of these are just exercises in Hatcher. But this should
just follow from the definition with cell complexes? O

44 Problems

Fall 2012, 8 Show that there is no compact 3-manifold M whose boundary is RP2.

Easy! Suppose the contrary. But then (M) = % x(0OM) = % X(RP?) = % Contradiction! "

Fall 2015, 1 and Fall 2020, 10 Let M, (IR) be the space of n x n real matrices.
(a) Show that SL,(IR) is a smooth submanifold of M, (RR).
(b) Show that SL,(RR) has trivial Euler characteristic.
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(a) Consider det: M,(R) — R. To show that SL,(IR) is a manifold, it’s enough to show that 1
is a regular value. To do this, we wish to show that d(det) 4 is nonzero (thus surjective) for
det(A) = 1.

We have
det(A + hB) — det(A)
h
-1y
_ }lin(l) det(A)(det(I 147— hBA=') —1)

d(det) s = lim

Now choosing B = A, since det(A) = 1, we can see that d(det)4 = 1 # 0 as desired. Note
that if the derivative is defined, we should be able to take the limit from any direction and
obtain the same value.

(b) We show that SL,(R) is homotopy equivalent to SO(n), and since Euler characteristic is
invariant under homotopy, x(SL,(R)) = x(O(n)). Let r : M,(R) — SO(n) by A = UP —
U, where UP is the polar decomposition of A so that P is positive definite and U is unitary
and therefore U € SO(n). Leti : SO(n) — M;u(R) be the inclusion. By uniqueness of
the polar decomposition, i or = id, so we show that r o i is homotopy equivalent to id.
To do this, consider H; : SL,(R) — SL,(R) defined by H;(A) = %. We note
det((1 —t)A +tU) # 0 as

(1— 1A +tU = U((1 — £)P + tI).

As P is a positive definite matrix, and the convex combination of positive definite matrices
is positive definite, and det(U) # 0, we have that det((1 — t)A + tU) # 0. Additionally, note
t,det (H;(A)) = 1. Moreover, we note that Hy = id and H; = r o, as desired.

Since SO(n) and SL,(IR) are homotopy equivalent, they have the same Euler characteristic.
Moreover, as SO(n) is a lie group, it is parallelizable and thus admits a nowhere vanishing
vector field. Since SO(n) is closed (it's the inverse image of {1} for the map A — AAT ) and
bounded, Poincare-Hopf implies x(SO(n)) = 0.

Spring 2017, 3 Use the Poincare-Hopf index theorem to calculate the Euler characteristic of S5".
(You must compute the indices in local coordinates. Drawings do not suffice!)

First, consider n = 2k — 1, where we then consider the vector field at p = (ay,b1,--- ,a, by) to
be (—by,a1,- -+, —bg, ax). Since (—by,a1,---,—by, ax) is orthogonal to (a1,by,- -, ax, by), and thus
(=by,a1,- -, —by,ax) € Ty(S") . Since this vector field has no zeros on S", by the Poincare Hopf
theorem, we see that S” for n odd has Euler characteristic 0.

Now, consider n = 2k, in which case, S" sits in R**!, For p = (ay, by, - - - a, by, r), we define the
vector field X at this point to be (—by,aq,---, —by, a;,0). As before, we note that the output is
orthogonal to the input, and thus (—by, a1, - -+, —bg, ax,0) € T,(S"). We note that in this case, there
are two zeros: namely at the points (0,---,0, £1).

The index of X around p = (0,---,0,1) can be computed by taking the degree of X,/|X,|
along a circle around p not containing any other zeroes of X. In particular, we can take the
one at the equator (ie. points of the form (zj,---,z,0) - we note that in this case, XPH =1,
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so we are just doing degree of X,, really). We notice that this is a map from S"~! to 5"! taking
(all bl/ s, Ay, bk) g (_bll ai, -+, _bk/ ak)'

Since each sign change contributes a factor of —1 , as do the swaps. Thus, the index here is
(~D)"A(=1)"? = (-1)" =1.

The index around (0, - - - ,0, —1) can be computed the same way, thus giving us a sum of indices
of 2. It thus follows then that the Euler characteristic is 2 . [

Fall 2017,7 Suppose M is smooth, connected, and oriented manifold without boundary.
(a) Show that if (M) = 0, then M admits a nowhere vanishing vector field.
(b) If M is a surface of genus g, then what is the min, (number of zeros of v), where v ranges
over vector fields whose zeros are isolated and have index +1?

(a) Let X be a vector field with a finite number of isolated zeros. We can assume, without loss
of generality, that these are located in an open set diffeomorphic to B;(0) (the unit ball in
R"). Now, we note that since the Euler characteristic is 0, the sum of indices is also zero (by
Poincare Hopf), which means that deg (X,/ | X, |) is also zero (viewing this as a function on
the boundary of U to S"~! ), which by the Extension theorem (Guillemin and Pollack page
146) and the Poincare Hopf Index Theorem allows us to extend X,/ | X, to g defined on all
of U. Note that f From here, define a vector field Y such that

v — { 8(p) pel
P Xp/|Xp| pel

Thus, Y is a nonvanishing vector field, as desired.

(b) We first notice that M has Euler characteristic 2 — 2¢, which by Poincare Hopf, given X that
has isolated zeros of index +1, the sum of indices give 2 — 2¢. In order to minimize the
number of zeros, we must have 2g — 2 zeros all with index —1. This can be done as follows:
we know that there is a vector field X with a source, a sink, and 2g saddles (if we consider
the flow of "dunking a n-hole donut and lifting it"). Now, we can, without loss of generality,
assume that the source, sink, and two of the saddles are contained in a neighborhood U
diffeomorphic to an open ball in R2. Now, we can consider X,/ HXPH as before, which is
nonzero on oU (which is diffeomorphic to S1); since the sum of indices of the source, sink,
and two saddles add up to 0, we see that X,/ | X, is a degree 0 map on dU, which means
we can extend it to a map g on all of U.

Unfortunately, we cannot do as we did before, since X} has zeros in M\U. To remedy this,
we first, assume without loss of generality, that U is the restriction of an open ball Uin R3
(note M can be embedded into R3 ) of radius 7, and find € > 0 such that the (closed) ball W
of radius r + € centered around the the same point as U, contain only the source, sink, and
same two saddles. Now, we can use a bump function to define our vector field as follows:
outside of W,Y), = X,, inside of U, Y, = g(p), and in between, we have a smooth transition
that is nonzero. Thus, we have ourselves vector field with only 2¢g — 2 zeros (all of index 1),
since we removed the source, sink, and two saddles.
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5 Poincare Duality

Poincare Duality has generally been tested in two ways on previous quals; either it has been used
simplify computation involving the rank of cohomology groups or the Euler characteristic, or you
have been asked to find Poincare duals to certain submanifolds. In both types of problems, only
the relevant results and needed; the proofs likely go beyond the scope of the exam. Therefore, I will
present the relevant results here and do my best to highlight how I think you should understand
the results in context, but I will not go into much rigorous detail on their proofs. These notes are a
combination of Lee’s Smooth Manifolds and Hatcher’s Algebraic Topology.

Also importantly, hypotheses matter here. There are many related statements of Poincare duality,
many with slightly relaxed conditions, and it is important to understand when you can apply a
result.

First, let’s consider the case of de Rham cohomology, i.e., cohomology over R. Let M be an ori-
ented smooth n-manifold without boundary. We define a map PD : QP (M) — Q¢ 7 (M)* via

PD(w):;p—»wa/\;y

This descends to a linear map PD : H?(M) — H, 7 (M)* because the integrals of exact forms will
vanish. Poincare duality says that this map is an isomorphism.

Theorem 5.1 (Poincare Duality). Let M be an oriented smooth n-manifold without boundary. The map
PD : HP(M) = H{ P(M)* is an isomorphism. In particular, dim HP (M) = dim H, " (M).

This implies that when the cohomologies are finite dimensional that H? (M) =~ H, " (M), although
note that there is no natural isomorphism here because the dual space H, ' (M)* is not naturally
isomorphic to H, " (M). So if you are asked to work with the isomorphism explicitly, (finding
Poincare duals is related to this) you should use this map.

There is also a related corollary for compact manifolds, where H*(M) = H¥(M). Here we have

Corollary 5.1.1 (Compact Poincare Duality). Let M be a closed oriented smooth n-manifold. The map
PD : HP(M) = H"™P(M)* is an isomorphism. In particular, dim HP (M) = dim H"~?(M).

This allows us to prove a result we have seen before. Let M be a closed manifold of odd dimension
n; then x(M) = 0. This is because

X(M) = i(—l)pdime(M) = Zn:(—l)pdimHn_p(M) =— Zn:(—l)p dim HP (M)
p=0 p=0 p=0

by re-indexing. So x(M) = —x(M), hence x(M) = 0. This type of argument is very standard.

Now recall that H""7(M)* = Hom(H"~F(M),R). From the Universal Coefficient Theorem, we
see that this is exactly H,_,(M), since R is free. This gives us an equivalent formulation.

Theorem 5.2 (Poincare Duality Again). Let M be an oriented n-manifold without boundary. There is an
isomorphism H! (M;R) = Hy—p(M;R) is an isomorphism. In fact, if M is R-oriented, then there is an
isomorphism HY (M; R) = Hy—p(M; R). In particular, dim H?(M;R) = dim Hy—p(M;R).

There is also a simpler version when the manifold is compact. This proof naturally comes from
algebraic topology, (hence we no longer need the smooth hypothesis. (Also since cohomology
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is homotopy invariant)) since we are no longer using the de Rham cohomology groups. The
explicit map is now defined using the cap product and the fundamental class. Specifically, if
[w] € Hy(M;R) is the fundamental class, then the isomorphism D : H?(M;R) — H,_,(M;R) is
givenby D : 7 — [w] n 7.

There is also a generalization of Poincare duality to manifolds with boundary known as Lefschetz
Duality.

Theorem 5.3 (Lefschetz Duality). Let M be a compact R-orientable n-manifold with boundary 0M. Then
there is an isomorphism HP (M, 0M; R) = Hy—p(M;R).

More generally, if we can decompose OM into the union of two compact (n — 1)-manifolds A and B with
common boundary 0A = 0B = A n B, then the is an isomorphism HP (M, A; R) = Hy »(M,B;R).

The special case comes by taking A = 0M and B = ¢, and this is the most any problem on the
qual has previously needed.

An example corollary of this result is that if M is an n-dimensional manifold with boundary, then
H, (M) = 0. From Lefschetz duality, we see that H,(M) = H*(M, M) = 0.

5.1 Universal Coefficient theorem

A result that is often useful for problems like this is the Universal coefficient theorem. This result
tells us that H;(X;Z) and H'(X;Z) completely determines H;(X; A) and H'(X; A) for any other
abelian group A.

Theorem 5.4. (Universal coefficient theorem for homology and cohomology)

In the homology case, consider the tensor product of modules H;(X;Z) ® A). Then there is a short exact
sequence with the Tor functor

0 Hi(X;Z)®A L Hi(X; A) — Tori(Hi_1(X; Z), A) — 0

On the other hand, in the cohomology case we assert there is the following short exact sequence with the Ext
functor

0 — Exth(Hi_1(X;R),G) — HY(X; G) % homg(H:(X;R),G) — 0

with this we can prove the following corollary of the Poicare Duality.

Corollary 5.4.1 (Corollary 3.37 of Hatcher). A closed manifold of odd dimension has Euler characteristic
zero.

Proof. Let M be a closed n-manifold. If M is orientable, we have rank H;(M; Z) = rank H"~'(M; Z)
Poincare duality. On the other hand, by exactness in the universal coefficient theorem for cohomol-
ogy, we know that H'(X; G) = Extk(H;_1(X; R), G) @ homg(H;(X; R), G). The Ext contribution to
H"~' will be torsion, whereas the Hom contribution to H"~* will be the free part of H,_;. There-
fore, rank H"~/(M; Z) = rank H,,_;(M; Z). Thus, if n is odd, all the terms of 3_;(—1)’ rank H;(M; Z)
cancel in pairs. O

Let’s warmup by solving this old friend again!
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Fall 2012, #8 Show that there is no compact three-dimensional manifold whose boundary is
RP2.

Suppose M is the manifold whose boundary is RP?. Let N be the double of M (ie. take two
disjoint copies of M and identify them by the boundary). Consider the following Mayer Vietoris
Sequence

-+ = Hy(dM) — Hy(M) ® Hy (M) — Hy(N) — Hy—1(0M) — -

Then the assumption on M yields,

.- — H,(RP*) — H,(M) @ H,(M) — H,(N) — H,,_1(0M) — - --

which gives x (RP?) —2x(M) + x(N) = 0. Note that

Z ifn=0
H,(RP?*) = { Z/2Z ifn=1
0 otherwise

and therefore, x (RP?) = 1.

As N is a compact oriented 3-manifold, we note that it has by utilizing Poincare duality in the
corollary above, that x(N) = 0. So, x (RP?) is even, which contradicts the fact that y (RP?) = 1.

Fall 2012, #7 and Spring 2015, #10 and Fall 2021, #5 Let n > 0 be an integer. Let M be a compact,
orientable, smooth manifold of dimension 41 + 2. Show that dim H?"*+1(M; R) is even.

Consider the map H*"*1(M) x H*"*1(M) — R where (w, 1) — §,, @ A 1. We can easily verify this
map is bilinear as follows, (w1 + wy, 1) = § (w1 +w2) Ay = i An+wran =5, w1 An+
§ M W2 A1 = (w1 +w,17) and the 7 component can be treated similarly. On the other hand, for any
¢ € R, we know that (cw, ) = §,,(cw) Ay =c§,w Ay =c(w,n)

This bilinear form is also anti-symmetric since

J CU/\17=—J nAw
M M

as both 77, w € O¥'*1(M) are both odd-dimensional.
Since R is a field, Poincare Duality gives us this is non-degenerate (proposition of 3.38 of hatcher).

It follows that dim H?"*1(M) is even as if it were odd, then
det(A) = det(AT) = det(—A) = (—1)3mH"" (M) get(A) = — det(A).

However as A is non-degenerate, we know that det(A) # 0. Thus, dim H*'*!(M) is even. n

Spring 2019, #10 Suppose M" is a compact, connected orientable topological manifold with
boundary a rational sphere, i.e. with H,.(0M; Q) = H*(S”_l;Q).
(a) Assuming n is odd, use Poincare duality (with Q coefficients) to show that M has Euler
characteristic (M) = 1.
(b) Assuming n =2 (mod 4), show that the Euler characteristic of M is odd.
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(a) Similar set up to F2012, #8. Let N = M uaym M. We note that by alternating sum of short
exact sequences of the Mayer-Vietoris sequence,

X(N) —2x(M) + x(oM) = 0.

As N is an odd dimensional closed orientable manifold, Poincare Duality implies x(N) = 0.
We also note that x(0M) = x(5" 1), and as nis odd, (5" ') = 2,s0 x(M) = 1.

(b) Let n = 4k + 2. Firstly, we note that H*(M) =~ Hy(M,0M;Q) = 0 and H"(M,M =
Hy(M;Q) = Q by Lefschetz Duality. We analyze the LES of the pair (M, 0M) in Q coeffi-
cients. As H,(0M;Q) = H,(S""1;Q), we have isomorphisms Hi(M;Q) ~ H{(M, oM; Q) for
alli <n—1. Thus, foralli <n—1, we have

H'(M;Q) ~ H'(M,oM;Q) ~ H"/(M;Q),
via Lefschetz Duality. Thus, we obtain

4k+2 ' ‘
X(M) = | (=1)'rank(H'(M;Q))
i=0
2k
— rank(H(M; Q)) + Z(—l)irank(Hi(M;Q)) — rank(H*1(M; Q))
- 4k+1
+ Z 1)'rank(H'(M; Q)) + rank(H**2(M; Q))
i=2k+2
2%
=1+ Z )'rank(H'(M; Q)) — rank(H*"(M;Q)) + > _(~1)'rank(H"~/(M; Q))
i=1

=1+ ZZ )irank(H'(M; Q)) — rank(H**1(M; Q)).
It suffices to show rank(H**1(M;Q)) is even. However, again, Lefschetz Duality gives us a
non-degenerate pairing
H2k+l (M, Q) ® H2k+1 (M, éM, Q) N H4k+2(M, 5M, Q) ~ Q/

given by the cup product. As H**1(M,oM;Q) = H?**1(M;Q), composing this isomor-
phism gives a non-degenerate pairing

H¥* ' (M; Q) @ H**'(M; Q) — H¥*2(M,oM; Q) = Q.

As 2k + 1 is odd, this is a skew-symmetric non-degenerate bilinear form, implying that
H?*+1(M; Q) must be an even dimensional space, as desired.

5.2 Poincare Duals

Despite the linguistic similarity, a Poincare dual is slightly different from the statement of Poincare
duality. Put directly, a Poincare dual to a submanifold is a cohomology class (of the codimension
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of the manifold) that allows integration on the submanifold to be related to integration on the
manifold. These notes come entirely from Petersen’s Manifold Theory.

Let S* = N" be a closed oriented submanifold of an oriented manifold with finite dimensional
de Rham cohomology of codimension m = n — k. A Poincare dual to S is a cohomology class

[ﬂé\]] € H!"(N) such that
J w = f s A w
S N

for all w € H*(N). (We will sometimes call a Poincare dual any representative nY € [Y].

The cluttered notation suggests that the dependence of the Poincare dual on the ambient manifold
N is annoying, and this is true because a Poincare dual might not even exist! For example, N
might have no cohomology in dimension m, like N = S". However, it is true that we can find
some neighborhood U of S, because §s w only depends on the values of w in a neighorhood of S.

In Petersen’s notes, he selects a tubular neighborhood U of S with a deformation retraction 7 :
U — S, where the fibers 7~!(p) are diffeomorphic to R™ for all p € S. This means that there is an
isomorphism

* : H¥(S) — H*(U)

and we can always find a Poincare dual [{] € H"(U). That is,

o] wam@

This is essentially the same for all tubular neighborhoods, so unless otherwise specified we say
that [#s] is a Poincare dual to S in some tubular neighborhood of S. But when this has been asked
on previous quals, it has always been the case that a Poincare dual can be found on the entire
manifold N.

Spring 2014, #5 Let M = R?/Z2 be the two dimensional torus, L the line 3x = 7y in R?, and
S = n(L) = M where 77 : R*> — M is the projection map. Find a differential form on M which
respresents the Poincare dual of S.

Let w denote a representative of the class of the Poincaré dual of S. Since H)(M) =~ Rdx ®Rdy,
we have w = adx + bdy for real numbers a, b. We calculate a, b using the definition of S and of the
Poincaré dual.

Let : denote the inclusion map S < M. Then

3=Jl*(dy)=f wAdyzf —adx ndy=a
S M M

and

7=J1*(dx)=J w/\dxzj bdx ndy = —b,
S M M

where we compute the integrals over S by pulling back to the line segment ¢/ — L from (0,0) to
(7,3) in R%. We conclude that w = 3dx — 7 dy. "

Fall 2015, #4 Let M = RR3/Z3 be a three-dimensional torus and C = 77(L), where L < R? is
the oriented line segment from (0,1,1) to (1,3,5) and 7 : R3 — M is the quotient map. Find a
differential form on M which represents the Poincare dual of C.
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This problem is very similar to the previous one, but we’ve moved up a dimension. Let w denote a
2-form on M representing the Poincaré dual to C. Since (by e.g. Kiinneth for S! x S x S!) we have
H%: (M) = Rdx ndy@®Rdy A dz@Rdx A dz, we can write w = adx A dy + bdy A dz + cdx A dz
for real numbers a, b, c. Now, for ¢ : C — M the inclusion, compute

1:f t*(dx)—f bdyAdZAdx:f bdx ndy ndz =1,
c M M

as well as
2=J t*(dy)zf CdX/\dZ/\dyz—J cdx ndy Andz = —c
c M M

and

4=J l*(dZ)ZJ adx Ady Adz = a.
o M

Again we compute the three leftmost inequalities by pulling back along the parametrization of C.
We conclude that w = 4dx A dy +dy A dz —2dx A dz. [

Fall 2016, #5

(a) Let M be a smooth compact manifold and N < M a smooth compact submanifold. Ex-
plain (in terms of integrals, without reference to cohomology) what it means for a closed
differential form w to be Poincare dual to N.

In parts (b) and (c), you are free to use your knowledge of homology and cohomology.

(b) Let M = T? be the two dimensional torus with coordinates (x,y) € (R/Z) x (R/Z) =~ T>.
Identify a submanifold N ¢ M Poincare dual to the form dy, and show that they are indeed
dual.

(c) Give an example of a closed 1-form on T? that is not Poincare dual to any submanifold.

We need M and N to be oriented as well. The solution to part (c) is taken from Harris Khan's
solutions document.

(a) Let:: N — M be the inclusion, and set m = dim M, n = dim N, and k = m — n. A closed form
w € OF(M) is Poincaré dual to N if for all closed n-forms 17 on M we have

(b) Let L = R? be the oriented line segment from (1,0) to (0,0), and let S be the image of L under
the projection 77 : R? — IR?/Z? ~ T2. We claim dy is Poincaré dual to S. Indeed, for a closed
1-form adx + bdy on M representing a general class in H} (M), and ¢ : S — M the inclusion,

we have
—a= f 1 (w),
S

J dy/\wzj dy/\(adx)z—f adx ndy = —a.
M M M

Since these are equal, the form dy is Poincaré dual to S as desired.

while
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(c) We claim the closed 1-form 7t dx is not Poincaré dual to any closed, oriented submanifold of
M. Let: : N — M be the inclusion of a closed, oriented 1-submanifold of M into M, and
let 1, : M — S! denote projection onto y-coordinate (identifying M =~ R?/Z? ~ (R/Z) x
(R/Z) = S x S1). Then if 7t dx were Poincaré dual to N, we’d have

j *(dy) = j mdx Ady = .
N M

But dy on M can be identified with 775 (d6) on S, so we also have

J f(dy) = f (112 01)*(df) = deg(m2 ot)f d0 = deg(mao1),
N N st

where we have used the definition of the degree of a map N — S! in terms of de Rham
cohomology. From the two display lines we conclude that deg(7; o 1) = 71, which is impossible
since the degree of a map is always an integer. We conclude that 77 dx is not dual to any closed
oriented submanifold of M.

6 Symplectic Forms

Sam’s notes give a great concise summary here that I think should be the primary reference here,
but I'm going to write down the main results here for completeness.

A symplectic form on a 2n-dimensional manifold is a closed 2-form w € O%(M) such that w" is
nowhere zero, i.e., w" is a volume form. The pair (M, w) is called a symplectic manifold.

The two prototypical examples are M = R?", where the symplectic form is w = Y. dx; A dy;, and
S? where any volume form is a symplectic form.

Symplectic manifolds are orientable, because the top cohomology is nontrivial. This means that
we can use Poincare duality, with suitable other hypothesis. For example, if (M, w) is a closed
symplectic 2n-manifold, then H*(M) # 0 for all k < n. This is just because [w"] # 0, and
[w"] = [@F] A [w" ).

Spring 2018, #5 A symplectic form on an eight dimensional manifold is a closed 2-form w

such that w* is a volume form. Determine which of the following admits a symplectic form;
S8 62 % S0 62 « S§2 x G2 x G2,

We analyze each given manifold separately. Note that the de Rham cohomology of S" satisfies

Rifp=0,of p=mn

HIR(S") =
i (5") {Oif0<p<n

and that the ring cohomology is
H*(8") = Z[a]/(#®), |a| =n

o S8: Since HZ; (S®) = 0, any closed 2-form is exact, meaning that on the level of homology,
for any closed 2-form w, w* = 0 cannot be a volume form.
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o S§% x S8 Consider Hi, (S? x S°) =~ Hi; (S?) ® Hig (S°) = C|[s% %]/ (s*,s'?). We note that
the elements of grading 2 all have the form cs? for some ¢, which means for a closed 2-form
w, we have w A w = 0, and so we cannot possibly have w* being a volume form here either.

o S§% x §2 x 5% x % Finally, note that H3, (S? x §? x § x §2) = C [s%, 12, u?, 0] / (s*, t4, ut, 0v*).

Consider (52 + 24+ u+ 02)4, which is of the form cs22u%v?, for some nonzero c¢. We note
that this is a generator of H®, meaning that this is a volume form.

Spring 2020, #2 Let M be a 4-dimensional manifold. A symplectic form is a closed 2-form w
such that w A w is a nowhere vanishing 4-form.

(a) Construct a symplectic form on R*.

(b) Show that there are no symplectic forms on the unit sphere S*.

(a) Since we are in R*, we want to construct a form such that w? is nowhere zero. Consider
w =dxy Adxy +dxz Adxgwegetw A w =2dx; Adxy Adxs A dxy

(b) We note that any closed 2 form w is exact as H2(S*) = 0. It thus follows that w A w is also
exact for any 2 form w since if w = dv then d(v A dv) = dv A dv = w A w. thus we can see
that w A w, then by continuity, {¢s w A w # 0, giving us our desired contradiction.

Spring 2022, #1 Let M be a closed (compact, without boundary) 2n-dimensional manifold, and
let w be a closed 2-form on M which is non-degenerate, i.e., for any p € M, the map T,M — T’;“ M,
X — ixw(p) is an isomorphism. Show that the de Rham cohomology groups H2k # 0 for
0<k<n.

It suffices to show H3% # 0, as [w"] = [wF] A [w"™*] for any 0 < k < n. Consider the map
TyM x T,M — R where
XxY - wp)XY).

This is a bilinear form as w(p) is a multilinear map. However as it is alternating, we have
w(p)(X,Y) = —w(p)(Y, X).

Finally, we see w is non-degenerate because Y — w(p)(X,Y) is exactly the map ixw(p), which
is an isomorphism by hypothesis. That is, for any X € T,M, 3Y € T, M such that w(p)(X,Y) is
nonzero, which proves w(p) is non-degenerate.

So we have a non-degenerate bilinear skew-symmetric form. Thus, there exists a basis
Xl,...,Xn,Y1,...,Yn € TPM

such that
w(p)(Xi,Y;) = 6ij,

and
w(p)(Xi, Xj) = w(p)(Yi, Yj) = 0.
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Thus,

implying

Thus,
wn(p)(xlr- ~-/Xn,Y1,. . .,Yn) =n!

implying w" is nowhere vanishing as Xy, ..., Xy, Y1,...,Y) is a basis for T, M, implying M is ori-
entable. As w" is nowhere vanishing, S M w" # 0, and as M is closed, this implies w" is not exact,
as desired. n

Fall 2022, #5 Let M be a 2n-dimensional manifold. A symplectic form on M is a smooth closed
2-form in O?(M) so that w A ... A w € O?*(M) is a volume form. (That is, nowhere vanishing)
Determine all pairs of positive integers (k, £) so that S¥ x S’ has a symplectic form.

We show the only pairsarek = ¢ =1and k = ¢ = 2.

Note that if S¥ x S’ is a symplectic form, as Sk x S’ is closed, we require w” to not be exact. As
[w"] = [wH] A [w" ], this implies we require all even De Rham cohomologies to be nontrivial. We
also need k + ¢ to be even.

Suppose k > 2 and ¢ > 2. Then, by Kiinneth’s formula,
H*($* x §') = H*(S") @ H(S") @ H' (") @ H'(S") @ H*(S") @ H*(S")
=0®Ze0R060®Z =0
So, none of the are possibilities as symplectic manifolds.
Suppose k = 2 and ¢ > 4. Then, by Kiinneth’s formula,
H*(S* x §') = HX(S*) @ H*(S") @ H'(S*) @ H*(S") @ H'(S*) ® H*(S")
=ZR000®00Z®0=0
So, none of the are possibilities as symplectic manifolds.
So, the possible candidates are S? x S?,S! x S!, and S? x S*.

S! x S! is symplectic as it is an orientable two dimensional manifold, as the product of orientable
manifolds is orientable, so any volume form is our symplectic form.

We show S? x S? is symplectic. Let 77 be a volume form on S?, which exists as S? is orientable, and
let 71; : S* x §> — S? be projection onto the ith coordinate. We have, via Kiinneth, 71§17 A 7137 is a
volume form on S? x S2. Take w = 7t} + 7t57. Note that 7t¥y A iy = wf(n Ay) =0asy Anisa
4-form on S2. Thus,

W Aw =271 AT,

which is a volume form, as desired.

S? x §% is not symplectic. Suppose it were. Note that, via Kiinneth,
H%(S? x §*) = H*(S>) @ H'(S*) = Z.
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Thus, it is spanned by 7t} 77 where 7 is a volume form on S2. Suppose w were a symplectic form on
S? x §%. Then, [w] = c[7}n]. Thus, [w®] = 3[7f1%] = 0. However this contradicts the fact the w?®
is a volume form, as it cannot be exact. n

Extra Which torii (S)" are symplectic manifolds? Which products (S?)" are symplectic mani-
folds?

7 The Fundamental Group

Hopefully, we already know the basics of the fundamental group but I'll put down the basic
definitions and then do more in adding the important propositions/facts surrounding the topic.
I'll try to include all the technical definitions where they show up. My source is Hatcher, but I do
things slightly out of order, in a way that makes sense to me, who already knows the material and
not learning it for the first time.

If we are given a connected topological space X and a specific point xp € X, we can define the
fundamental group of X based at xg, 771(X, x9) = L(X, x9)/ ~ where L(X, x¢) is the space of all the
loops based at xg. The relation ~ is based homotopy equivalence, that is a homotopy H;(x) where
H(1) = xo = H¢(0) for all t € [0,1]. We call this a group since it has a group structure where the
product of two loops is the concatenation of two loops and the inverse of a loop is running the
loop in reverse, and the identity is the equivalence class of the constant loop y(x) = xo.

7.1 Relations of Spaces and Fundamental Groups

I feel like one of the most important things to keep straight is where maps between spaces and
fundamental groups arise. Like, if a pair of spaces have some property what does that say about
their fundamental groups? Or if I have some property about fundamental groups what does that
say about the spaces and the maps between them. In my mind this includes all the covering space
stuff.

One of the first questions we could ask is what do maps between two topological spaces f : X — Y
do to the fundamental groups 711(X, x¢) and 711(Y, f(x0)) relate? Since any continuous map sends
loops to loops, preserves concatenation, homotopy, and sends the trivial loop to the trivial loop,
we get that every continuous map f induces a homeomorphism on fundamental groups, also
known as a push forward, f. : (X, x0) — m1(Y, f(x0)) where f.[y] = [f oy]. We can then
ask what sort of group homomorphisms between fundamental groups can naturally arise. For
example, by considering the projection maps 7tx, 7y from X x Y to X and Y we get the following:

Proposition 7.1. If X and Y are path connected spaces, then

7T1(X X Y, (X(),yo)) = 7T1(X, xo) X 7T1(Y,y0).

This isomorphism arises naturally by sending v : I — X x Y to (7tx(7), ty(y)) (here 7 is the
projection map) we can see that the order of the first component vs second component does not
matter since that can change by homotopy in X x Y.

One of the most important group homomorphisms, the change of base-point isomorphism, does
not arise as a push forward of a map. If y is a path from xg to yo, then we can consider the map
By : (X, x0) — m1(X,yo) which sends a loop 7 to hi -y - h~! where - represents concatenation of
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paths, we can check that this obeys all the group laws and has an inverse which is ;,-1. These iso-
morphisms sometimes show up in propositions (like the next few), so it is good to be comfortable
with them.

Since the fundamental group is a topological object it is not too surprising that it is invariant
under homotopy, some of the time we want to know how it is invariant, as in exactly what are the
isomorphisms which is the topic of the next few propositions.

Proposition 7.2. If Hi(x) : I x X — Y is a homotopy, then we know then the push forwards Ho, and
Hy.. are related by the change of base-point isomorphism on Y via the path h : t — H(0). That is Hy, =
,Bh o Hox

Proposition 7.3. If f : X — Y is a homotopy equivalence, then f.m1(X,x0) — m1 (Y, f(x0)) is a group
isomorphism.

This second follows from the first since if f o ¢ ~ 1 then which implies that f, 0 g, = (f0g)x =
14 0 Bpx = PBn« 5O we can see that f,. o g« and g o f, are group isomorphisms of 711(X, x9) and
(Y, f(xo)) respectively so they are both isomorphisms.

So homotopy equivalent spaces have the same fundamental group. See here for some! clever
examples. We can also ask what happens with the push-forward from covering maps.

Theorem 7.1. If p : X — X is a covering map. Then p. : m1(X,x0) — (X, p(x0)) is an injective
isomorphism. That is p.(711(X, x0)) is a subgroup of 711 (X, p(xo)). If X and X are path connected then the
number of sheets in this covering space is the index of the subgroup,

The theorem comes from properties about the homotopy lifting property of covering spaces. This
gives us a necessary and sufficient condition for a map f : X — Y to lift to the covering space
X — Y. To do this we will need one more technical definition.

Definition 7.1. A space X is locally path connected, if for all x € X and neighborhoods V of x, there is a
neighborhood U of x, where U — V and U is path connected.

Proposition 7.4. Suppose that Y is a path connected space and locally path connected. Then f : X —'Y
lifts to f : X — Y ifand only if fm1(X, x0) < p«(Y, o) where p(yo) = f(x0).

The locally path connected definition is used to show that the lift is continuous. That is points
near x lift to points near f(X) since a short path in X connects them, so a short path in Y connects
them and thus a short path in Y connects them.

Remark 7.1. We should not confuse this with the other map lifting properties which deal with lifting the
domain not the image, that f : X — Y lifts to f X — Y which always exists and is continuous. The more
interesting question is when f : X — Y descends, which is when it is constant on the fibers of p.

Recall, the uniqueness of lifts, that if f; and f, agree at a point then they agree on that entire path
component. One special case of lifting maps properties is in the classification of covering spaces.

Proposition 7.5. If X is path connected and locally path connected, and has covering maps p1 : X1 — X
and py : Xy — X, where p1.(X1,x1) = pas(X2, x2) where p1(x1) = pa(x2), then p1 : Xq — Xo which
sends x1 to xy is a homeomorphism.

There is also a converse that if X1 and X, are covering spaces and f : X1 — X, is an homeomorphism with
f(x1) = x2, then p1.(X1, x1) = p2+(X2, x2).

TURL: https://www.math3ma. com/blog/clever-homotopy-equivalences
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We can note that if X is path connected and locally path connected and x; and x; are both in the
fiber of xy then ]5*(5(, x1) and fl*(f(, x7) need not be the same! But they will be isomorphic as
subgroups of 711(X, xp). In fact, we can find what the isomorphism is. If g is loop in X which lifts
to a path from x; to xp, then we can see that 711 (X, x1) and 711 (X, x) are isomorphic by change of
base-point transformation Sz which sends ¥ to § o 4§ !, which corresponds to the map goyo g™
in 711(X, x9) where note that g and g_l are now elements of 711 (X, x) and not paths so the change
of base-point is in fact conjugation. We then get the following important corollary.

Proposition 7.6. If X is a path connected and locally path connected space, where p : (X, x1) — (X, x0)
is a covering space. p.(711(X, x1)) is a normal subgroup of 7v1(X, xo) if and only if p is a normal covering
space (that is the deck transformations are transitive).

Since the deck-transformations are the homoemorphism of the covering space X, then we can
note that they form a group of themselves, denoted by G(X) in Hatcher. It is also true that G(X)
is isomorphic to N(ps(m1(X, x1)))/ps(m1(X, x1)) where N(G) is the normalizer of the group G.
This is most useful when p is a normal covering so N(p«(71(X, x1))) = m1(X, x9) and so G(X) =
(X, x0)/p (1 (X, x1)).

We can further classify all the covering spaces if our space has the added property of being semi-
locally simply connected, note that being locally simply connected, simply connected, and locally
contractible (e.g. CW complexes and manifolds) are a stronger conditions which often hold in real
life.

Definition 7.2. A space X is semi-locally path connected if for all x € X there is a neighborhood U of x
such that the inclusion map i : U — X has the trivial push-forward i, w1 (U, x) — m71(X, x0). That is every
path of U is sent to a null homotopic path in X (it need not be null homotopic in U)

Theorem 7.2. If a space X is path connected, locally path connected, and semi-locally simply connected
then there is a bijection between the subgroups of 111(X, xo) and the set of path connected covering spaces
of X (up to isomorphisms preserving base-points). Notably this isomorphism is realized by p : X — X by
p111(X, x0) is 711(X, p(x0)).

This has two big consequences in my mind. One if a space is semi-locally simply connected, then it
has a universal cover (which is useful in some qual problems). Or, we can find the set of subgroups
of a group by finding the path connected covering spaces of that space.

7.1.1 Group actions and Covering spaces

There is an aside about when group actions lead to covering spaces, this also occurs in smooth
manifolds for that I am using Lee. Suppose instead we are given a group action G on a space X
and want to know if X — X/G is a covering space. If we are in the realm of smooth manifolds, we
will first give a few definitions.

Definition 7.3. A smooth group action by a Lie group G on a smooth manifold M is proper if only if
Gk = {g€ G:(g-K)nK)} is compact for all compact K = M.

Note if G is a finite group we can give it the discrete topology and every action is proper. If it is
infinite, we need only show that G is finite for all K.

Proposition 7.7. If G is a Lie group whose action on a smooth manifold M is smooth, free, and proper.
Then q : M — M/G is a smooth normal covering map.

If on the other hand we are working in the continuous case we get the following instead.
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Proposition 7.8. If a group G acts on a space X, such that for all x € X there is a neighborhood U of x
such that Gy = &, then q : X — X /G is a normal covering space. If we assume further that X/G is path
connected the deck transformations are isomorphic to G, and if we even further assume X/G is locally path
connected then G = 111(X/G)/q.(11(X))

7.2 Computations

In my head there are two major tools for actually computing fundamental groups. The first is
Van-Kampen the second is the computation for CW complexes. I think usually, we mess around
with homotopies and homotopy equivalences to reduce something to a space we can apply one of
these two tools or use Van-Kampen to break up a space that can be homotoped nicely.

Theorem 7.3 (Van Kampen). If X is a union of the interiors of path connected sets {A;} each containing
a single point xo. If each pairwise intersection is path connected. Furthermore, if every triple intersection is
path connected. Then we have that ® : =711 (A;) — 11(X) is surjective with kernel generated by i,xﬁ(w)igal

for w € 1 (Ay N Ap)
There a few corollaries of this theorem.

Proposition 7.9. 711(X v Y) = m1(X) = 7r1(Y) if the wedge point is a deformation retract of a neighborhood
inXandY.

Proposition 7.10. If X is a CW complex then we can note that 7t1(X) is given by 711 (X')/N where N is
generated by the boundaries of the attached 2-cells.

Proposition 7.11. 711(X x Y) = my(X) x 71 (Y).

7.3 Problems

Fall 2013, #9 Let H < S° be the Hopf link, shown in the figure

Compute the fundamental group and the homology groups of the complement S* — H.

We can use stereographic proejction to see that S* — {p} is homeomorphic to R?, while S! — {p} is
homeomorphic to R. Thus, we see that S3_His homeomorphic to R3 with the z axis and the unit
circle (cos(27tt), sin(27tt),0) removed. We note that this deformation retracts to the torus (this can
be seen in that first, this deformation contracts to a sphere with a circle removed, as well as a line
that passes through the middle of the circle removed, from which we can enlarge the removed
circle as well as the line). From here, we have S? — H having the same fundamental group and
homology groups as T2. These are explicitly given as follows

7'[1(53 —H) = 7T1(T2) =22

Z®7Z ifn=1
H,(S°—H)=H,(T>) =4 Z ifn=0,2

0 otherwise
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Fall 2014, #8 Consider the space X = M; u M, where M; and M, are Mdbius bands and
M n My = 0M; = 0M;. Here a Mobius band is the quotient space ([—1,1] x [-1,1])/((1,y) ~
(_1r
(a) Determine the fundamental group of X.
(b) Is X homotopy equivalent to a compact orientable surface of genus g for some g?

—Y)).

(a)

(b)

We proceed by Van Kampen. We’d like to apply van-Kampen to the cover X = M; u M, but
the issue is that M; and M, are not open in X. So instead, we take A and B to be small epsilon
neighborhoods of M; and M, and then we apply van-Kampen to the cover X = A U B.

More explicitly, Let A and B be thickenings of M; and M respectively with the identification.
In this case, we note that A and B are both homotopic to S 1 while A nBis homotopicto S Las
well, but wrapping around twice. Here, we note that the image of the loop around A n B of
themapis: AnB— Aandip: An B < B are homotopic to taking the loop around twice.
Thus, we note that 711 (X) = 711(A) * 711(B)/N, where N is generated by (i4), (7) (is), (7) 7'
If welet 711 (A) = Z be generated by a and 711 (B) =~ Z be generated by B, then N is generated
by a?b=2. So, m1(X) = (a,b | a®b™2).

We notice from the above that Hy(X) = m1(X) = (a,b | a?b=2,aba~'b~"), the abelianization
of 711(X), has torsion elements: namely, ab. On the other hand, we note that H; (Mg) = 7%
is torsion free. Thus, for no ¢ do we have X and M, being homotopy equivalent.

Spring 2015, #8 Let X be a CW complex consisting one vertex p, 2 edges a and b, and two 2-cells
f1 and fo, where the boundaries of 4 and b map to p, the boundary of f; is mapped to the loop
ab? (that is first a and then b twice), and the boundary of f, is mapped to the loop ba?.

(a) Compute the fundamental group 7r1(X) of X. Is it a finite group?

(b) Compute the homology groups H;(X),i =0,1,..., of X.

()

(b)

The boundary of two cells f; and f, contract to a point and thus the fundamental group has
the following presentation <a, b | ab?, ba2>. In particular, we note that a = b2 and b~ = a2,
meaning that a = a*, so 4> = 1. Similarly, b> = 1. Moreover, we note that ab*> = 1, s0 ab®> = b,
so a = b. Thus, this group is just (a | a*). There is only 1 group of order 3, which is Z3 and

this is certainly finite.

It immediately follows that H; (X) = Zj3 since the first homology is the abelianization of the
fundamental group. We have the following chain complex (starting from 3-simplices),

0->2>-7>-7Z—0
where the map Z2 — Z is 0, and since df; = a +2b and df, = 2a + b it follows that Z? — Z2
is given by (a,b) — (a + 2b,2a + b). The kernel of this map is clearly trivial witha = b = 0,

so Hy(X) = 0 as well as all the other higher dimensional homology groups. It is also clear
from the above sequence that Hy(X) = 0, since it is path connected.
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8 Covering Spaces

An important result is the following which relates deck transformation (isomorphism between
covering spaces) and the fundamental group.

Theorem 8.1. (Proposition 1.39 of Hatcher) Let p : (X, %) — (X, xo) be a path connected covering space
of the path connected locally path connected space X, and let H be the subgroup p.(111(X, %)) < m1(X, xo).
Then

(a) This covering space is normal iff H is a normal subgroup of 1t1(X, Xo)
(b) G(X) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of H in 7t1(X, xo).
In particular, G(X) is isomorphic to 711(X, x0)/H if X is a normal covering. Hence for the universal cover

X — X we have G(X) ~ m1(X).

8.1 Problems

Fall 2013, #7 Let M = T? — D? be the complement of a disk inside the two-torus. Determine all
connected surfaces that can be described as 3-fold covers of M.

Comment on these types of problems: coming up with a cell structure with a single vertex is
usually helpful. If this can’t be done, contract a maximal subtree to a point (just remember to
expand this vertex back out into the full tree at the end...I think this works). Then do the graph
classifying business making sure loops given by 2-cell attachments downstairs are still loops in
the covering upstairs. Because attaching a 2-cell lets the loop homotope to 0 downstairs and by
injectivity of covering map it must do the same upstairs.

Oh and here’s the reason the maximal subtree idea needs to work. Homotopy equivalent spaces
have the same classes of coverings spaces by the correspondence. So you better not add or remove
any coverings by adding your contracted subtree back in, and the only way to do that seems to be
to expand it out at the corresponding vertices in the cover.

Fall 2014, #9 Determine all the connected covering spaces of the wedge sum RP'* v RP.

First note that any connected (locally path-connected, semi-locally simply connected) space X
admits a simply connected double cover X, then its only connected covering spaces are X and X
we can see this because X is the universal cover of X, and since it is a double cover, (proposition
1.39 of Hatcher) 7r1(X) must have order 2 (so must be Z/2Z) so its only subgroups are the trivial
group (corresponding to the universal cover) and the whole group (corresponding to the trivial
cover X — X).

Therefore, the covering spaces for RP'* are RP and S'4, and similarly the covering spaces for
RP'? are itself and S'°. In particular, in the covering of X = RP™ v RP¥, when we have a S*
or S, since it’s a double cover, there are two connecting points that can be wedge summed with
coverings of the other, while RP™ and RPY has only one of these connecting points. Thus, the
covering spaces that we have are as follows: we can have a chain that begins with RP'* or RP'®
that ends with the other one (since we need to ensure that we our covering degree is the same),
with alternating S 14 and S'° in the middle, we can have an alternating circle of S 14 and S¥°, we can
have an infinite chain that starts with a RP* or RP*® that infinitely alternate between S 14 and S15,
and we can also have an infinite chain of alternating S and S that have no beginning or end. =
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Spring 2014, #7 Let X be the wedge sum S' v S'. Give an example of an irregular covering
space X — X.

We recall that the coverings of S! are S! itself and IR. We note that the preimage of the wedge point
in the covering space must be wedged with the wedge point of the covering space of the other S'.
Let m11(X) = 711 (S') # 711 (S'), with a corresponding to the first 77y (S'), and b for the second.
Consider X such that we have S! (corresponding to a), with wedged with R (corresponding to
b), and each wedge point of R (corresponding to a) is wedged with IR that corresponds to b, and
each subsequent wedge points, are all wedged with R accordingly. We note that if we choose
m (X, %), where ¥ is the wedge point of the initial S!, then p.711(X, %) = {a). We note that this is
not normal, since given b, we see that bp*m(f(, JZ)b*1 = <bab*1>. Thus, we see that this is not a
regular covering space. n

9 Computing Homology: Chain Complexes and Homology, Mayer-Vietoris,
and the Sequence of a Pair

As the obscene number of problems in this section might suggest, being comfortable with the
algebraic machinery of chain complexes and homology and with certain long exact sequences in
homology can make taking the qual much more pleasant. It’s safe to bet money that at least one
problem on your qual will fall to these methods, and it’s not uncommon to have two or even three
exact sequence problems on the same exam. Qual problems that make use of these techniques
might ask you to...

* do concrete computations with abstract chain complexes, including demonstrating the exis-
tence of certain long exact sequences;

¢ compute the homology (or more rarely, de Rham cohomology) of some weird quotient space
cooked up from nice spaces (by far the most common);

¢ relate the homology of a suspension to the homology of the space you're suspending (this
falls under the previous bullet but comes up so often it’s worth mentioning on its own);

¢ compute relative homology, including homology of certain quotients not falling under the
second bullet, using the exact sequence of a pair.

We'll go through these bullets in order, outlining the required definitions and facts as we go.

9.1 Abstract Chain Complexes and Homology

The aim of this section is to very quickly review the formal machinery of chain complexes and
homology. There aren’t too many problems purely on abstract chain complexes, but knowing
how to work with them will net you points should such a problem come up and will also give
you more perspective for where the exact sequences we’ll see are coming from. In particular, we’ll
prove the snake lemma and show how to use it to obtain long exact sequences in homology.

Unless otherwise stated, all objects in our chain complexes are abelian groups.

Definition 9.1. A chain complex (A.,d.) is a collection of abelian groups ..., Ao, A1, ... along with
maps (“differentials”) d; : A;j — A;_q satisfying d;_1 od; = 0 for all i.
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A cochain complex (A*,d*) is defined similarly, except the differential d' now maps d' : A* — A+ and
we require 'l od' = 0.

I always remember the indexing on the differentials as matching that of the domain. Maybe “d for
domain” is a useful mnemonic for this, maybe not.

Examples include:

* The singular chain complex with C;(X) defined as the free abelian group on continuous
maps A; — X for X a space and i > 0. Writing [v, ..., v;| for the standard i-simplex, the
map d; : Ci(X) — C;_1(X) is given by

where the hat denotes omission.

* The de Rham cochain complex of differential forms on a smooth manifold M. The abelian
groups are the groups ()'(M) of differential i-forms on M for i > 0, and the differentials
d': /(M) — QIT1(M) are given by the exterior derivative.

Definition 9.2. Let (A., d.) be a chain complex. Its homology groups are defined by H, = kerd, /im d,, ;1.
Similarly, for a cochain complex (A*,d*), its cohomology groups are defined by H" = ker d" /im d"~1.

In the examples above, we get singular homology H;(X) and de Rham cohomology H(M) as
the (co)homology groups of the relevant complexes.

Definition 9.3. A sequence of abelian groups A L, B & Cis exact (at B) if kerg = im f. A longer

sequence of abelian groups is exact if it is exact at every group in the sequence.

So, algebraically, homology measures the failure of a chain complex to be an exact sequence at
every object of the complex.

To actually compute homology, say the singular homology (resp. de Rham cohomology) of a space
(resp. manifold), it’s extremely useful to be able to compare homology across chain complexes. In
topological contexts, this typically means building a more difficult space or manifold out of sim-
pler ones with known (co)homology in a way that lets us read off the more difficult (co)homology
using algebraic means. We get these comparisons using long exact sequences associated with
short exact sequences of complexes.

Definition 9.4. Let (A.,d. ) and (B.,dep) be chain complexes. A chain map f, : (Al des) —
(Bo,de ) is a collection of group homomorphisms f; : A; — B; for which dig o f; = fi_1 od;a for all
i. A short exact sequence of chain complexes consists of chain complexes (As,de a), (Be,dep), and
(Ce,de ) and chain maps f, : Ae — Be and g : Be — C, for which the sequences

04 LB c -0
are exact for all i.
We get long exact sequences from chain complexes according to the following proposition.

Proposition 9.1. Suppose we have a short exact sequence of chain complexes

0— A, 25 B, 25, 0.

34



Then there exist natural maps § : H;(C) — H;_1(A) producing a long exact sequence

= Hi(A) > Hi(B) & H(C) & Hia(A) - -+

Here, “naturality” of § means that the maps we construct get us a functor from short exact se-
quences of chain complexes to long exact sequences. It doesn’t seem like they test the precise
meaning of “natural” here, so I wouldn’t worry about it unless you're really curious.

We prove the proposition (ignoring naturality, since you won’t be asked about it) here, as the
construction of long exact sequences and of the connecting map does get tested. The key step,
providing the construction of the connecting map, is important (and tested) enough to get its own
proof.

Lemma 9.1 (Snake lemma). Suppose we have a commutative diagram with exact rows

a2 g, 0
ool b
0 Artsptsc

There is a map 6 : ker h — coker f fitting into an exact sequence
ker f — kerg — kerh %, coker f — coker g — coker h.

Proof of snake lemma. We construct the map ¢ directly. Pick x € ker h. Exactness of the upper row at
C’ implies B’ — C'is surjective, so x = ¢’ (y) for some y € B’. By the commutativity of the diagram
and the fact that x € ker h we have h(¢'(y)) = ¢(g(y)) = h(x) = 0, so g(y) € ker ¢ But exactness of
the lower row at B then gives an element z € A with ¢(z) = g(y). This z is unique since exactness
at A means ¢ is injective. We claim that sending x to the class z of z in coker f works for 4.

To see ¢ is well-defined, pick another i’ € B’ with ¢'(y') = x. Then y — i € ker ¢/, so exactness at
B’ produces w € A’ with ¢'(w) = y — y'. Arguing as in the previous paragraph, there exists z’ € A
with ¢(z') = g(v’), and the injectivity of ¢ along with the commutativity of the diagram then show
that f(w) = z — z’. So both choices of y give the same class in coker f, and ¢ is well-defined. (From
here we can also show J is a group homomorphism.)

Now we just need to check exactness. We have im(ker ¢ — kerh) < kerJ, because for x € kerh
the image of y € ker ¢ we have g(y) = 0, and injectivity of A — B then implies 6(x) = 0 € coker f.
For keré < im(kerg — kerh), take x € kerh with 6(x) = 0. We get y € B’ with ¢/'(y) = «x
and z € A with ¢(z) = g(y). The fact that 6(x) = 0 means z € im f, so there exists w € A’
with f(w) = z. By the commutativity of the diagram we have ¢(f(w)) = g(¢'(w)) = g(y), so in
particular y — ¢’(w) € ker g. Then by exactness at B’ we have

Yy —9' @) =v'y) =x,
showing x € im(ker ¢ — ker h) as required.

Finishing up, note that im ¢ < ker(coker f — coker g) by construction of § (in particular the fact
that ¢(z) = g(v)). To show ker(coker f — coker g) < im, pick z € ker(coker f — coker g). This
lifts to z € A, and the fact that z is in the kernel of the map of cokernels means that ¢(z) € img.
Pick y € B’ with g(y) = ¢(z). Then ¢/ (y) satisfies 6(¢'(y)) = z, and we are done. O
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For practical purposes, the most important part of the proof of the snake lemma is the first para-
graph above, where we actually construct the map 6. This map is often called the connecting map
or boundary map. You usually won't be asked to prove more of the snake lemma than that, but
seeing the rest of the details is good practice with exact sequences.

Proof of proposition 9.1. The és at each stage will be precisely the map constructed in the snake
lemma, once we arrange the given complexes the right way. For all integers i, we have the com-
mutative diagram with exact rows

0 —— kerdgy ——— kerdg ——— kerdc

| | |

0 A Ji B, s C; 0
i, s e
0— A4 L Bi_1 L Ci_, ——0

| | |

Ai_1/im(d) , — Bi_1/im (d)g —— Ci_1/im (d)c — 0

In particular, the top and bottom rows are exact. Moreover, we know that d 4, dg, dc commute with
all f;, ;. This fact, combined with the fact that di‘, d%, d% = 0, give another commutative diagram
with exact rows

Aj/imdi 14 — Bi/imd;1p —— C/imdiqc —— 0
I I I
dia dip dic

v e e

0 —— kerd;_1 4 — kerd;_13 —— kerd,;_;.

We have kerd; 4 : A;/imd;;14 — kerd;_14 = H;(A) and similar for B,C, while cokerd, 4 :
Aij/imd; 14 — kerd;_14 = H;_1(A) and similar for B,C. Applying the snake lemma to this
diagram for all i then gives the desired long exact sequence. ]

The following problems are mostly (if not entirely) focused on algebraic operations with chain
complexes.

Spring 2013, #10 Let A — X be a subspace of a topological space. Define the relative singular
homology groups H,(X, A) and show that there is a long exact sequence

-+ = Hy(A) — Hp(X) — Hp(X, A) — Hp_1(A) — -

We note that on the level of chain complexes, we have C,(X, A) = C,(X)/Cn(A). We note that
this forms a chain complex where the boundary operator 0;, : C,(X, A) — C,_1(X, A) is given
by 0,[A] = [0,A]. Note in particular that this is well defined, because if [A] = 0, then we have
A € Cy(A), in which case d,A € C,_1(A), so [0,A] = 0 as well. It is clear that we have a valid
boundary operator since

100 [A] = [Ou_100nA] = [0] = 0

Therefore, we can define the relative homology as

H,(X, A) = ker (6,) /Im (Ops1)
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Now, we claim that 0 - C(A) — C(X) — C(X,A) — 0 forms a short exact sequence of chain
complexes. To see this we first note at for each 1,0 — C,(A) — C,(X) — C,(X, A) — 01is a short

exact sequence of abelian groups. Denote the maps as 0 — C(A) iNYe (X) I c (X, A) — 0. Where
i is the inclusion and j is the quotient map. It is clear that i o J, = J, o i. We wish now to show that
jody = 0noj. Indeed, we see that jo 0,[A] = j(0,A) = [04A], while 0, 0 j(A) = 0,,[A] = [0,4)], as
desired.

Since we have a short exact sequence of chain complexes, we then have a long exact sequence of
homology groups (via a lot of diagram chasing), as desired. n

Fall 2019, #9
(a) If
0-A—-B—->C—0

is a short exact sequence of chain complexes, show how to get the boundary map in the
associated long exact sequence.

(b) Compute the boundary map when the short exact sequence is the result of tensoring the
chain complex

B0 Z D7 50—

with the short exact sequence

0 2Z/5>Z/25 - Z/5 — 0.

(@) Leti: A - Bandj: B — C be the maps between the chain complexes. We construct the
map H,(C) — H,_1(A). First, take [c] € H,(C) Since c is cycle, we have dc = 0. From short
exactness, j is surjective, so there is b € B, such that b — c. Now, we note that dj(b) = job = 0,
so job = 0, meaning that there is a € A,_; such that i(a) = j(0b). This [a] is what [c] is sent
to. Now, we note that if we took another b’ such that j (V') = ¢, then we see that j (b — V') = 0.
This means that there is @ € A, such that i(@) = b —bV’. This means that for the a’ € A,
such that i (a’) = j(db), we would have i (a —a') = i(a) —i(a’) = o(b) — (V') =0 (b—V') =
0i(d@) = i0(a); since i is injective, this means a — a’ = i, so a and 4 are in the same homology.

Finally, we note that if we took ¢ + d¢, then we notice the following: there is b in By 41 that
maps to ¢ € C,,41, in which case, b + 0b mapsto to ¢ + d¢. Applying this 0 to b + b yields 0b,
since 0o 0 = 0. Thus, the [a] obtained is still the same.

(b) Tensoring the two short exact sequences together gives the following diagram

x5

0 Zs Zys Zs 0
lO lx5 lO
0 Zs 55 Zos Zs 0

We note that the homology group on the top right is Z/5. If we take 1 € Z/5, we note that
1 € Z/25 maps to it. Pushing it down, we note that we get 5 € Z/25. We note that this gets
mapped to by 1 € Z/5, which is the output of the boundary map. So, in this case, we see that
the boundary map is the identity on Z/5.
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Fall 2022, #6 Let C. be a chain complex of free abelian groups. Let A, = C.® Z/p and let
B. = Cix ® Z/p? be the chain complexes we get by tensoring C, degreewise with Z/p and Z/p?,
respectively.

(a) Show that we have a short exact sequence of chain complexes

0—> Ay — By > A, —0
induced by the corresponding sequence of chain complexes
0—Z/p—Z/p* - Z/p — 0.
(b) Show how to define a Bockstein natural transformation
B Hi(As) — Hi1(Ax)

producing a long exact sequence

= Hi(Ax) = Hy(B2) = Hi(A2) 5> Hi1(A0) = -

associated to the short exact sequence of part (a).
(c) Show that if x and y are elements such that d(x) = py, then

) =7,

where the bars indicate the reduction modulo p of the corresponding classes.
(d) Show conversely that given an element x € Hy(A,), if B(X¥) = 0, then we can find elements
x,y € C, such that x reduces to x modulo p and d(x) = p?y (mod p°).

9.2 Homology for Cursed (and Not-So-Cursed) Spaces: The Mayer-Vietoris Sequence

The most common type of long exact sequence problem asks you to compute the homology of a
concrete space. There is a particular type of space that lends itself to these methods: generally,
these will be quotients of products of spaces you know well. The Mayer-Vietoris sequence lets
us compute (co)homology for these spaces using a nice cover for the space, typically picking two
subsets homotopy equivalent to spaces whose homology we know, whose intersection also has
familiar homology.

Theorem 9.2 (Mayer-Vietoris for singular homology). Let X be a topological space and A, B two sub-
spaces whose interiors cover X. Denote by i (resp. j) the inclusion of A n B into A (resp. B), and denote by
k (resp. £) the inclusion of A (resp. B) into X. Then there is a long exact sequence

(5 5

o Hppt(X) S Hy(A A B) W), Hu(A) @ Hy(B) 2% H,(X) % Hy1(AnB) — ...

Moreover, if A and B have non-empty intersection, there is a Mayer-Vietoris exact sequence for reduced
homology given by putting tildes above every H in the standard Mayer-Vietoris sequence.

With Mayer-Vietoris it is often helpful to know the actual maps on homology, which is why we
state the theorem with the maps included. The map ¢ comes from the snake lemma as follows: for
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i = 0, denote by C;(A + B) the subgroup of the chain group C;(X) consisting of sums of chains in
A and chains in B. Barycentric subdivision shows that the inclusion C;(A + B) — C;(X) induces
isomorphisms on homology. We obtain a short exact sequence

0 — Ci(AnB) - Ci(A)®Ci(B) —> Ci(A+B) — 0

giving a short exact sequence of chain complexes, after which the formalism of the previous sec-
tion produces the long exact sequence with boundary map as in the snake lemma.

The following problem is both good practice with Mayer-Vietoris and is common enough in its
own right to be worth knowing.

Spring 2014, #10; Spring 2016, #9; Fall 2018, #9; Fall 2020, #6; Spring 2022, #8 Let X be a topo-
logical space. Define the suspension S(X) to be the space obtained from X x [0, 1] by contracting
X x {0} to a point, and contracting X x {1} to another point. Describe the relation between the
homology groups of X and S(X).

Take A to be the image of X x [0,.55) and B to be the image of X x (.45,1] in S(X). Then A and
B are contractible and A n B deformation retracts onto a copy of X. The Mayer-Vietoris sequence
for reduced homology reads

-+ — Hiy1(A) @ Hi11(B) — Hiy1(A U B) — Hi(A 0 B) — H;j(A)® Hi(B) — - --
which in this situation becomes
= 0— Hi1(S(X)) - Hi(X) > 0— - -

This portion of the exact sequence tells us that H;,1(S(X)) =~ H;(X) for all i > 1. Since S(X) is
path-connected we have Hy(S(X)) = 0, and so the portion of the sequence going from degree 1 to
degree 0 reads

0 — Hy(S(X)) — Ho(X) — 0.
In particular, we have Hy,1(S(X)) =~ Hi(X) for all k. "

While this is a good example to know, it’s not the hardest one you might see. For instance, we did
not need to do any “exact sequence sudoku” since all of the maps were isomorphisms. In tandem
with this point is that we didn’t have to think about what the maps in the sequence are doing.
The next several examples offer plenty of practice with computing homology of spaces cooked up
from ones we know.

Fall 2013, #10 Let H = R® Ri ® Rj @ Rk be the group of quaternions, with relations i* = j> =
—1,ij = —ji = k. The multiplicative group H* = H — {0} by left multiplication. The quotient
HP"~! = (H" — {0})/H* is called the quaternionic projective space. Calculate its homology
groups. (It is easiest to do this with cellular homology, but it’s good to know how to calculate
(co)homology of projective spaces using Mayer-Vietoris and induction, also.)

Fall 2014, #7 A compact surface of genus g, smoothly embedded in IR?, bounds a compact region

called a handlebody H.

(a) Prove that two copies of H glued together along their boundaries by the identity map pro-
duces a closed topological 3-manifold M.

(b) Compute the homology of M.

(c) Compute the relative homology of (M, H), where H is one of the two copies.
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(a)

(b)

We note that for the interior points of M, it correponds to an interior point of H, and therefore
they have a neighborhood that is homeomorphic to R? since H is a manifold. The boundary
points of M correspond to the points which are a boundary point of H, and thus have a
neighborhood that is homeomorphic to the closed halfspace; since we are identifying the
two copies of H by the boundary, it follows that the neighborhood we choose gets identified
along the boundary, which is homeomorphic to the halfspace identified along the boundary,
which is precise R3. We have compactness by the fact that we are taking the quotient of a
compact space.

Let A be the interior of H x {0, 1}, and B be a thickening of the boundary. As such, we note
that A deformation retracts onto three copies of the wedge of g circles, and B deformation
retracts onto 0H, the compact oriented genus g surface. We also note that A n B deformation
retracts onto three copies of 0H. For A, we note that Hy(A) = 0, Hi(A) = Z*, generated
by af, forj =0,1,andi = 1,---,g, and Hyp(A) = Z?. For B, we note that Hy(B) = Z,
Hy(B) = 7%, generated by ay,by,-- - ,ag, by, and Ho(B) = 0. As for A n B, we have Hy(A n
B) = Z?,Hi(A nB) = Z%, generated by af and b{, fori = 0,1, andi = 1,---,g. and
Hy(A n B) = Z3. From this, we have the following Mayer Vietoris sequence:

0— Hg(X) - H2(A N B) - HQ(A) (‘BHZ(B) — HQ(X)
— Hi(An B) — Hi(A) ® Hi(B) — Hi(X)
— Ho(A N B) — Ho(A) @Ho(B) — Ho(X) -0

We note that X is clearly path connected, so Hy(X) = Z. We also note that Hy(A n B) injects
into Hyo(A) @ Hp(B), since the generators for each path component of A n B maps to the
generator of the corresponding path component in Hy(A). Thus, we see that the last row is
exact, in which case we get

0— Hg(X) - HQ(A N B) - H2(A> (‘BHZ(B) — HQ(X)
— Hi(A nB) — Hi(A)@® Hi1(B) — Hi(X) —» 0

Now, we note that for the map H>(A n B)) — H(A) @ H»(B), we have (1,—1) — 0, since
H>(A) = 0 and the image of each path component of A n B — B is homotopy equivalent to
B. Thus, we see that the kernel of this map is isomorphic to Z, in which case we see that the
image of the map H3(X) — H(A n B) has as its image isomorphic to Z; indeed, since this
map is injective, H3(X) =~ Z. Now, we note that since Hy(A n B) =~ Z? and Hy(A n B) —
H,(B) is surjective, we see that 0 — H3(X) — Hz(A n B) — Hy(A) ® H2(B) — 01is a short
exact sequence. As such, the following sequence is then exact:

0 — Hy(X) — Hy(A n B) — Hi(A)® H;(B) — Hy(X) — 0.

We note that the map Hi(A n B) — Hi(A) ® Hi(B) maps u{ — (a{, ai) and b{ — (0, b;).
From this, we see that the kernel of this map is generated by b! — b?, fori = 1,--- ,n. This
is isomorphic to Z2?¢ generators, from which we see that the image of the map Hy(X) —
Hj (A n B) is too, and since it’s injective, Hp(X) =~ ZS$. Finally, we notice that the map H;(A n
B) — Hy(A) @ Hi(B) has as its image generated by (af, ai) and (0, b;), which has dimension
3g, which is the kernel of the next map. Moreover, we can extend this by (0, 4;), which gives
a generating set for H1(A) ® H1(B). Thus, we see since H1(A) @ H1(B) — H;(X) is surjective,
we have H1(X) =~ Hi(A) ® H1(B)/ker (H1(A) @ H1(B) — H;(X)), which is generated by the
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equivalence classes of (0, ;). It thus follows that H;(X) =~ Z¢&. We note Hy(X) = 0 for k > 3,
since X is the quotient of a 3-manifold.

Fall 2016, #10 If f : X — X is a self-map, then the mapping torus of f is the quotient
Ty = (X< [0,1])/((x,0) ~ (f(x),1)).

For n € Z, let f, be a degree n map S° — 5°. Compute the homology groups of Ty, .

Fall 2017,#9 A compact surface (without boundary) of genus g, embedded in IR? in the standard
way, bounds a compact 3-dimensional region called a handlebody H. Let X = (H x {0,1,2})/ ~,
where (x,i) ~ (x,]) forall x e 0H and i, ] € {0,1,2}. Compute the homology of X.

Spring 2018, #7 Let M, N be smooth, connected, orientable n-manifolds for n > 3, and let M#N

denote their connected sum.

(a) Compute the fundamental group of M#N in terms of those of M, N. You may assume the
base point is on the boundary sphere along which we glue M and N.

(b) Compute the homology groups of M#N. You may use without proof that H,(—;Z) of a
connected orientable n-manifold is always isomorphic to Z.

(c) For part (a), what changes if n = 2? Use this to describe the fundamental groups of orientable
surfaces.

(This is more of a van Kampen problem than a Mayer-Vietoris problem, but why not do a bit of

both :))

Fall 2019, #4 Let X = S! x S! and let Y be the quotient of X x [0, 1] by the relation

((x,¥),0) ~ ((y,x),1).
Compute H.(Y;Z).

Spring 2020, #10 Let D? be the unit disk in C, and let S! = 0D?. Let X = D? x S! x {0,1}/ ~
where

(x,9,0) ~ (xy°,y,1)
for all x,y € S'. Compute the homology groups of X.

Fall 2021, #9 Let X be the quotient of the space {0,1,2} x S' x D? by the relation

(0,21,22) ~ (1,21,22) ~ (2,21,22) VZl,Zz € 51.

Compute the homology groups H,(X; Z) for all n.
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Spring 2023, #10 Consider the CW-complexes A = S" v §", X = §" x §",and B = 5" x [0,1]/ =
%[0, 1], where = is the basepoint of S”. There are inclusions A < X given by the pairs of points
where at least one is the basepoint, and A — B which takes one S" to 5" x 0 and the other to
§" x 1. Compute the homology of

Y =XuyB.

9.2.1 Mayer-Vietoris for Cohomology

Mayer-Vietoris also works for cohomology, but it goes the opposite way. For singular cohomology,
the sequence looks like

. — HY(X) > H"(A)® H'(B) > H(A~B) &> H*(X) — - -

with dimension-preserving maps given by restriction. We give a precise statement for de Rham
cohomology since it is slightly different and we can again describe the maps explicitly.

Theorem 9.3 (Mayer-Vietoris, de Rham cohomology). Let M be a smooth manifold, and let U,V < M
be open subsets which cover M. Let i (resp. j) denote the inclusion U NV — U (resp. UV — V), and let
k (resp. £) denote the inclusion U <~ M (resp. V < M). Then there are natural maps § : Hyz(UNV) —
Hf;ﬁgl (M) fitting into a long exact sequence

Hie (M) L (1) @ Hig(v) Z5 Hig(U V) S HE (M

T Hdr - ar(V) —— Hr(U V) = Hyg' (M) — -~ -

As far as I can tell, Mayer-Vietoris for cohomology is very rare compared to for homology. That

said, the strategies are mostly the same: pick your cover wisely using deformation retracts, know
the (co)homology of common spaces, and study the exact sequence you get.

Spring 2016, #6 Let T?> = IR?/Z? be the two-dimensional torus with coordinates (x,y) € R?, and
let p e T?.

(a) Compute the de Rham cohomology of the punctured torus T? — {p}.

(b) Is the volume form w = dx A dy exact on T? — {p}?

It is also possible to use Mayer-Vietoris to compare Euler characteristics of spaces, using the fact
that the alternating sum of ranks / dimensions in an exact sequence is zero. The following prob-
lem, which has already appeared a couple times on this document, provides the key example on
this front.

Spring 2016, #4, Spring 2022, #9 Let M be a compact odd-dimensional maniofld with nonempty
boundary dM. Show that the Euler characteristics of M and ¢M are related by

X(M) = 2 x(@M).

9.3 Relative Homology and the Long Exact Sequence of a Pair

The other major long exact sequences that come into play frequently on the qual are the long exact
sequence for relative homology, and the long exact sequence of a good pair. Recall that a space
X and subspace A form a good pair if A is nonempty, closed, and is the deformation retract of
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some neighborhood in X. These sequences are useful for computing relative homology and for
computing the homology of a quotient X/A where (X, A) is a good pair.

Definition 9.5. Let X be a topological space and A < X a subspace. Since the boundary map for the
singular complex takes i-chains in A to i — 1 chains in A, there is a well-defined boundary map on the
quotients C;(X)/C;(A). The relative homology groups H;(X, A) are then given by the homology of the
resulting complex.

We have a short exact sequence of complexes
0—Ce(A) = Co(X) = Co(X,A) =0

where C;(X, A) := C;i(X)/C;(A) for all i. The algebraic machinery of the first section then gives the
following.
Theorem 9.4. Let X be a topological space and A < X a subspace. There are natural maps ¢ : Hi(X, A) —
H;_1(A) forall i, producing a long exact sequence
i s

- — Hi(A) 2 Hi(X) » Hi(X,A) > Hi_1(A) — -+ .
The connecting map 6 sends the class of a relative cycle o in H;(X, A) to the class of dn in H;_1(A).
Moreover, when A is nonempty, we get an exactly analogous exact sequence for reduced homology.

We can already do some calculations with this sequence!

Spring 2017, #7 Let X = S! x D? with boundary X = S! x S!. Compute the relative homology
groups Hi(X, 0X; Z) for all k.

Spring 2020, #7 Prove that the relative homology groups Hi (X, x) for different choices of base-
point x can be naturally identified with each other. That is, for every k > 0, every space X,
and all pairs of points x,y € X (not necessarily in the same connected component), construct
isomorphisms nffy : Hy (X, x) — Hi(X, y) satisfying

(@) 7, =idforallx e X;

(b) 1, 0%y = N2z forallx,y,z € X;

(€) f«o ’79)51/ = q}((x)’ Fy) © f« for all x,y € X and all continuous maps f : X — Y.

(Hint: consider doing the k > 1 case first.)

One technique for simplifying relative homology calculations is to use the excision theorem. This
theorem says that if you start with a subspace A < X and remove a small enough Z < A from
A and Z, then the relative homology does not change. While this theorem is useful, for example,
to prove the exact sequence for reduced homology of a good pair, it doesn’t directly turn up on
the qual much (a search for the word “excision” in Jerry’s notes brought back nothing...). So, we
simply state the theorem here, then move on to the sequence for good pairs.

Theorem 9.5 (Excision). Given subspaces Z < A < X such that the closure of Z is contained in the inte-
rior of A, the inclusion (X — Z, A — Z) — (X, A) induces isomorphisms H;(X — Z, A—Z) — H;(X, A)
forall i. Equivalently, for subspaces A, B — X whose interiors cover X, the inclusion (B, A n B) — (X, A)
induces isomorphisms H;(B, A n B) — H;(X, A) for all i.
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Theorem 9.6 (Exact sequence for good pairs). If (X, A) is a good pair (i.e. A is closed in X and is a
deformation retract of some neighborhood in X), then there is an exact sequence

— Hi(A) 5 H(X) 2 Bi(X/A) S Hia(A) > .,

where i is the inclusion A — X and j is the quotient map X — X/A. Moreover, the quotient map
q:(X,A) - (X/A, AJA) induces isomorphisms H;(X, A) ~ H;(X/A) for all i.

The main thing I've seen that uses the sequence for a good pair is the following problem:

Fall 2019, #2, Spring 2023, #9 Compute H,(RIP"*™"/IRIP"; Z) as a function of n and m. Here we
are viewing RIP" < RPP"*" induced from the inclusion

Rn-‘rl s ]Rn+m+1’

(xl,...,x,,H) — (xl,...,an,O,...,O).

(This is written slightly differently but the idea is there)
First note that (RP",RP™) is a good pairt, so H;(RP"/RP™) = H;(RP",RP™).

We have H;(RP™) = 0 for all i > m, and H;(RP™) — H;(IRP") is an isomorphism for i < m. From
this, it follows that
H;(RP",RP™) =~ H;(RP") fori>m+1

and H;(RP",RP™) = 0 for i < m. Fori = m,m + 1, we have the exact sequence

0 — Hy1(RP") = Hyyy1(RP", RP™) — Hyy(RP™) — H,y(RP") — H,y,(RP", RP™) — 0.
There are two cases.
Suppose m is even. Then, H,,(RP™) = 0, thus H;(RP", RP™) =~ H;(RP") fori = m,m + 1.
Suppose m is odd. Then, H,,(RP™) =~ Z and H,,,(RP") = Z /2, and our sequence takes the form

0 — Hys1 (RP", RP™) — Z % 7/2 — H,,(RP",RP™) — 0

where ¢ is the map induced by inclusion. When we consider the inclusion RP"™ < RP”", the top
m-cell of the subspace gets an (m + 1)-cell attached to it in the larger space via a map of degree
2, and from the cellular chain complex you see that this m-cell that generates H,,(IRP™) =~ Z also
generates H,,(RP") =~ Z/2. In other words ¢ is surjective, and therefore H,,(RP", RP") = 0 and
Hy,11(RP",RP™) = ker(¢) = Z.

There is also the following interesting problem, to keep you on your toes with hypotheses:

Spring 2019, #7 Let X = [0,1] and A = {0} U {% | n € Z, n > 1}. Show that H1(X, A) is not
isomorphic to Hy(X/A).

There are a few more problems below.
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9.4 Problems

Spring 2015, #9 Let X, Y be topological spaces and let f,g : X — Y be two continuous maps.
Consider the space Z obtained from the disjoint union (X x [0,1]) u'Y by identifying (x,0) ~ f(x)
and (x,1) ~ g(x) for all x € X. Show that there is a long exact sequence of the form

- Hi(X) 5 Hi(Y) > Hi(Z) 5 Hia(X) = -

and describe the maps a, b, c.

Fall 2015, #9 Given a continuous map f : X — Y between topological spaces, define
Cr=((Xx[0,1)uY)/~,

where (x,1) ~ f(x) for all x € X and (x,0) ~ (x/,0) for all x,x" € X. Show that there is a long
exact sequence

s Hit (X) L5 Hi (Y) = Hi (Cp) > Hy(X) £

where f is the map on homology induced from f and H; denotes the ith reduced homology
group.

Spring 2021, #4 Let A% be the k-dimensional skeleton of the n-simplex A,. Calculate the re-
duced homology groups I:Ii(A,(qk)) for all values of 7, k, n.

Fall 2022, #9 The space S! x S! is the mapping cone of the map
[a,b] : S — St v St

representing the commutator of the inclusion of the left summand a : S! — S' v S! and the
inclusion of the right summand b : S' — S! v S!. Use this and the long exact sequence to
compute the homology.

10 Suspensions and Mapping Cylinders/Cones/Tori

Here we outline specific constructions that have appeared on the qual and which are relevant
to homology. They are generally not as ubiquitous as the long exact sequences described in the
last section, but it is good to know how to work with them. In particular, suspensions interact
with homology and degree in a way that can provide quick solutions to some problems, and the
mapping stuff tends to produce some of the more difficult exact sequence problems.

10.1 Suspensions

This section is largely drawn from Sam’s qual prep document, albeit more condensed and with
more focus on getting the most useful facts and practice problems written down. We start with
the definition.
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Definition 10.1. The suspension S(X) of a space X is the quotient space (X x [0,1])/ ~, where (x,1) ~
(y,1) and (x,0) ~ (y,0) forall x,y € X.

Informally, we form S(X) by “suspending” X between two points, as shown in the following
classic picture of S(S!) ~ S2:

NS

The most useful fact about suspensions for qual purposes, which often arises as a qual problem
itself, is the following characterization of the homology of S(X) (copied from the section on Mayer-
Vietoris).

Spring 2014, #10; Spring 2016, #9; Fall 2018, #9; Fall 2020, #6; Spring 2022, #8 Let X be a topo-
logical space. Define the suspension S(X) to be the space obtained from X x [0, 1] by contracting
X x {0} to a point, and contracting X x {1} to another point. Describe the relation between the
homology groups of X and S(X).

Take A to be the image of X x [0,.55) and B to be the image of X x (.45,1] in S(X). Then A and
B are contractible and A n B deformation retracts onto a copy of X. The Mayer-Vietoris sequence
for reduced homology reads

-+ — Hi;1(A) ®Hi11(B) — Hiz1(A U B) > Hi(An B) — Hi(A)®H;i(B) — - -
which in this situation becomes
= 0= Hip1(S(X)) = Hi(X) =0 — -

This portion of the exact sequence tells us that H;,1(S(X)) =~ H;(X) for all i > 1. Since S(X) is
path-connected we have Hy(S(X)) = 0, and so the portion of the sequence going from degree 1 to

degree 0 reads
0 — Hi(S(X)) — Ho(X) — 0.

In particular, we have Hy,1(S(X)) =~ Hi(X) for all k. n

A punchy summary of the problem above is "suspension raises the degree of homology." A couple
consequences of this fact include:

e For k > 2, we have Hi(S(X)) =~ Hy_1(X).

e For k = 1 we get H;(S(X)) = Hy(X) = Z*~1, where k is the number of path components of
X.
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* More an observation than a consequence, but we always have Hy(S5(X)) = Z because S(X)
is always path connected: from any point one can walk up to one of the suspension points
and back down to where they need to go.

This interaction of the suspension with homology is useful for some problems, e.g. to get spaces
with prescribed homology groups.

Fall 2013, #8 Let n > 0 be an integer and A a finitely presented abelian group. Show that there
is a space X with H,(X) = A.

As an extension of this problem, note that we can get prescribed homology in finitely many de-
grees by repeatedly applying the method of this problem, taking wedge sums, and possibly taking
disjoint union with some isolated points to modify Hy.

If (X, xp) is a pointed space with chosen point x(, the space S(X) has a whole interval of points
coming from xo. In particular S(X) does not have a natural choice of base point. We can get around
this issue using reduced suspensions:

Definition 10.2. If (X, x¢) is a pointed space (alternatively, if X is any space and we pick any xo € X), the
reduced suspension XX is the space (X x [0,1])/ (X x {0,1}) u ({xo} x [0,1])).

Reduced suspension interacts with homology in a manner simiilar to the unreduced suspension.

Spring 2016, #9 Let p € X and XX be the reduced suspension of X: that is, taking X x [0, 1] and
collapsing X x {0,1} u p x [0, 1] into a point. Describe the relation between the homology groups
of X and X X.

We first begin with the same argument as in 10.1 to get Hy1(SX) = Hi(X) for all k. Then, consid-
ering XX = SX/({p} x [0,1]), we note we have the LES, as (SX, {p} x [0, 1]) is a good pair,

-+ = He({p} x [0,1]) = He(SX) — He(EX) — ...
As {p} x [0, 1] is contractible, this implies
Hiy1(EX) = He1(SX) = H(X),

for all k. n

It is worth noting that suspension is a functor: not only can we suspend spaces, we can also sus-
pend continuous maps, and this suspension operation respects composition of maps. Explicitly, let
f : X — Y be a continuous map of spaces. We get a continuous map f xid : X x [0,1] - Y x [0,1]
sending (x,t) to (f(x), t). Taking the quotient giving the suspension on the codomain gives f x id :
X x[0,1] — S(Y), and since this map is constant on the fibers of 77 : X x [0,1] — S(X), we obtain
a well-defined continuous function S(f) : S(X) — S(Y) given by the formula above.

Since we can iterate functors, we can also form iterated suspensions 5" (X) and reduced suspen-
sions 2" (X).

Fall 2022, #10 Let f : X — Y be a continuous map of pointed spaces. Let X" f : ¥"X — XY be
the nth reduced suspension of f. Show that if for some 1, 2" f induces the trivial map on reduced
homology, then it does for all 7.
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A final fact on suspensions is that the preserve degrees: if f : S — S" is a degree k map, then
S(f) : S"*1 — S"*1 also has degree k. See Subsection 12.1, the subsection on degrees in algebraic
topology, for a proof.

10.2 Mapping Cylinders/Cones/Tori

These constructions don’t seem to appear very often on the qual, but they can be tricky when they
do. Oftentimes you will be given the construction of one of these objects and be asked to derive
a long exact sequence relating the homology of the construction to those of the constituent spaces
and the map used to glue.

First, a quick definition and exposition.

Definition 10.3. Let f : X — Y be a continuous map of spaces. The mapping cylinder of f is the
space My formed by gluing X x [0,1] to Y by identifying X x {1} with f(X). In symbols, we have My =
(Xx[0,1D]TY)/ ~ where (x,1) ~ f(x) forall x € X.

The idea behind mapping cylinders is that it allows you to "treat all maps as inclusions” from the
point of view of homotopy theory. What does this mean? Notice that My deformation retracts
onto Y by sliding the copies of X down. So My ~ Y (homotopy equivalence). This deformation

retraction also gives a homotopy from the inclusion X — X x {0} = My to X EN f(X) = My,
showing that the inclusion X — My and f itself induce the same map on homology. Therefore,
although f might not be injective, we can replace it by the inclusion X < M/ which has the same
homotopical behavior.

This idea is useful for deriving an exact sequence in homology for the mapping cone Cy = My /(X x

{0})-

Fall 2015, #9 Given a continuous map f : X — Y between topological spaces, define

cr = (xx[01]]Y)/~,

where (x,1) ~ f(x) forall x € X and (x,0) ~ (x’,0) for all x, x" € X. Here | [ is the disjoint union.
Show that there is a long exact sequence

s Hi(X) 25 Hip (Y) = i (Cp) — Hi(X) 25 Hi(v) —> -

where f is the map on homology induced from f and H; denotes the ith reduced homology
group.

You can do this using Mayer-Vietoris or the sequence of pairs. Here we will use the sequence of
pairs.

Let My be the mapping cone of f and A = My be X x {0}. Then C; = M;/A and (Mg, A) form a
good pair, since A is closed in My and A has a neighborhood (say X x [0,0.5)) which deformation
retracts onto it. So H;(My, A) = Hi(M f/A) = H;(C ¢) for all i, and the sequence of pairs reads

-+ — Hi1(A) = Hip1(My) — Hipq(Cy) — Hi(A) =5 Hi(My) — -+,

where:: A — Mf is the inclusion.
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This sequence already looks a lot like what we want; we just need to swap out that A and M terms
while keeping track of what happens to : upon making these identifications. Since the natural
map X — A is a homeomorphism, we have H;(X) — H;(A) for all i where the map on homology
takes a chain in X to the same chain in X x {0} = A. Now recall from the discussion preceding
the problem that M deformation retracts onto Y in a way that provides a homotopy from the
inclusion X Mf tothemap f : X - M ¥ given by enlarging the codomain. In particular,
replacing H;(A) with H;(X) and H;(My) with H;(Y) changes ¢ to f., and we obtain the sequence
that we want. .

The hardest part of making the exact sequence into what we wanted was making sure the map
L+ became the map f.. This worked because the maps we used to swap out the objects in the
sequence actually changed ! into f. In general we can always swap out abstractly isomorphic
objects in an exact sequence to get another exact sequence, but to study the maps in the sequence
you need to keep track of what the isomorphisms are actually doing.

Try using this exact sequence on the following example.

Fall 2022, #9 The space S! x S! is the mapping cone of the map
[a,b] : ST — St v St

representing the commutator of the inclusion of the left summand a : S! — S! v S! and the
inclusion of the right summand b : S' — S! v S!. Use this and the long exact sequence to
compute the homology.

Another construction is the mapping torus, which also has an associated exact sequence (although
it is more difficult to derive).

Definition 10.4. If f : X — X is a map, the mapping torus T of f is the quotient (X x [0,1])/((x,0) ~
(f(x),1)).

The exact sequence associated to this construction is as follows.

Lemma 10.1. For Ty the mapping torus of a map f : X — X, there is an exact sequence

o Hi(X) L5 Hy(X) 5 Hy(Ty) — Hy 4 (X) = -+,

where 1 is an inclusion X — Ty.

Proof. We begin with the sequence of pairs for X x {0,1} < X x [0,1]. We are interested in the
portion of the sequence reading

> Hi (X x [0,1], X x {0,1}) & H;(X x {0,1}) 25 H;(X x [0,1]) — -+ - .

We have a quotient map of pairs g : (X x [0,1], X x {0,1}) — (Tf, X) inducing a map of long exact
sequences

% Hi (X x [0,1], X x {0,1}) —%— H;(X x {0,1}) —*— H;(X x [0,1]) — - --
. . .
~ ~ ~
)

e Hi1(T;, X) Hy(X) ——*—— Hy(Tf) —— -
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Analyze the sequence as follows: since X x [0, 1] deformation retracts onto X x {0} and X x {1},
the map ¢ is surjective. Thus the following map is the zero map and J is injective, identifying
Hi 1(X x [0,1], X % {0,1}) with the kernel of ¢,.. But we know ker ¢, explicitly: it consists of (x, —«)
for « € H;(X). So ker:, =~ H;(X). Finally, since the pairs involved are good pairs, the map
g+ induces an isomorphism on the relative homology groups, so we can replace H;1(Tf, X) by
H,(X) in the sequence. Finally, passing i, through g shows that the corresponding map in the
new sequence is 1 — f,, as desired. O

This sequence is useful for the following problem.

Fall 2016, #10 If f : X — X is a self-map, then the mapping torus of f is the quotient
Ty = (X< [0,1])/((x,0) ~ (f(x),1)).

For n € Z, let f, be a degree n map S°> — $°. Compute the homology groups of Ty, .

11 Cup product

11.1 Ring structure on Cohomology

Cup product is an operation on cohomology similar to wedge product on deRham cohomology
(In particular, it has all the same properties!). Sometimes it allows to distinguish between different
spaces.

Definition 11.1. The cup product of two cochains ¢ € C*(X; R) and ¢ € C'(X; R) (viewed as duals of the
chain groups) is ¢ — P € CK+(X; R) defined on the simplex o : A*+! — R by

(¢ — 0)(0) := p(cl[oo, - ., v)p(ol[ox, - - -, V11i]-
Lemma 11.1.
o — ¢) =o¢ — p+ (-1)'¢ — oy,
where ¢ € CX(X; R).
This allows us to consider the induced cup product H*(X; R) x H'(X; R) — H*!(X; R).
Definition 11.2. Define H*(X; R) = @,, H"(X; R) with the product

(Z "‘i)(Z Bj) = Z ;B
where ay, Br € HY(X; R).
If R has an identity 1, define 1 € H°(X; R) as the element whose value on each 0-simplex is 1.
This will make H*(X; R) into a ring.
Consider a couple of properties:
Proposition 11.1. Suppose R is commutative. Then
v—p=(-1"p—uq
where x € H*(X;R), B € H(X; R).
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Proposition 11.2. Suppose f : X — Y has the induced maps f* : H*(Y; R) — H"(X; R). Then
frla—B) = f*(a) — f*(B).
That is, f* induces a ring isomorphism.

Everything above can also be extended to the relative case.

11.2 Kiinneth Formula

We describe a way to calculate cohomology of a space by decomposing it into smaller spaces
whose cohomology rings we already know.

H*(X;R)® H*(Y;R) — H*(X x Y;R)

This map becomes a ring homomorphism if we define the multiplication multiplcation in the
tensor product as (a ® b)(c®d) = (—1)!¥lIlac ® bd (with |x| being the dimension of x). Then the
map above sends this element to

(—=1)Plac x bd = (=1)PMlpf(a — c) — p3(b — d)

(=1)
= (=1)"lpi(a) — pi(c) — p3(b) — p3(d)
p

1(a) — p3(b) — pi(c) — p3(d)
= (axb)(cxd)

which is the product of the images of (4 ® b) and (c ®d).
The Kiinneth formula below tells us that this map is an isomorphism.

Proposition 11.3. (Kiinneth formula) The cross product H*(X; R) ®r H*(Y;R) — H*(X x Y;R) is an
isomorphism of rings if X and Y are CW complexes and H*(Y; R) is a finitely generated free R-module for
all k.

11.3 Computations and examples
Theorem 11.2 (Spaces with polynomial cohomology).
o H¥(S") = Z[a]/(a2), |a| = n
H*(RP", Z3) = Zs[a]/(a™1), |a| = 1 (i.e. « € H(RP", Zy).
o H*(RP*,Z) = Zafa], |a| = 1
H*(CP", Z) = Z[a]/(a"*1), |a] = 2

11.4 Problems

Fall 2015, 7 & Spring 2020, 6 Show that any map from S? x S — CP? is of even degree.
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Notice that the ring structure on H*(CP?) is Z[a]/(a®), where « € H?(CP?). Therefore a? is the
generator of H*(CP?). Since f* is a ring homomorphism, f*(a?) = (f*a)2.

Notice that H?(S? x §?) ~ H?(S?) ® H?(S?) by the Kiinneth formula. Therefore f*(a) should be of
the form f*(a) = c1715(61) + 2715 (62), where 6 and 6, are the volume forms on S2. But then we

get
FH(@?) = (f*(@))* = e (67) + 2e102711 (01) 713 (02) + 3713 (63) = 2c1c07tf (61) 713 (62).

Ascy,cp € Z, our map f is of even degree. n

Spring 2018, 5 A symplectic form on an eight dimensional manifold is a closed 2-form w such
that w* is a volume form. Determine which of the following admits a symplectic form: S8, $? x
56 62 % §2 x G2 x G2,

12 Degtree

Like all great topics on this qual, degree can be defined in several different equivalent ways. Dif-
ferent definitions are advantageous for solving different problems, and there has been at least one
qual question explicitly asking you to relate the definitions, so it is important that you can juggle
them fluently.

12.1 Algebraic Topology
The algebraic topology definition of degree is the narrowest, focusing on maps from S" — S".

Definition: Given a map f : S" — S", the pushforward f, : H,(S") — H,(S") is an group
homomorphism Z — Z given by multiplying by some d € Z. This is the degree of f, deg(f) = d.

Proposition 12.1. Basic Properties:
(a) deg(l) = 1.
(b) deg f = 0if f is not surjective. (Given x ¢ im (f), we can factor f : S* — S™ through S™\{x} which
is contractible)

(c) If f ~ g, then deg(f) = deg(g). (Since then f, = g+.) Moreover, the converse is also true and is
known as the Hopf Degree Theorem.

(d) deg(fg) = deg(f)-deg(g)

(e) If f is a reflection across a hyperplane, deg(f) = —1. This means deg(—1) = (—1)"*1, and that if
f has no fixed points, then deg(f) = (—1)"*1.

Computing the degree of a general map is difficult, unless there is a clear image of the generator
A} — A} for H,(S"), like in the reflection map. But we can use the local degree, and this is often
easier to work through.

Suppose that we have f : " — S" and y € S" with f~1(y) = {x1,...,x,} a finite set. Then for each
x;, we can choose an open neighborhood Uj;, such that all of the U; are pairwise disjoint. And we
can choose a neighborhood V of y such that each U; is mapped into V. Le., f(U;\{x;}) = V\{y}. (We
can tighten the hypotheses a bit so that the inclusion is an equality by appropriately intersecting
our sets, but in general this does not matter.) Then for any i, we have a commutative diagram:
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Hy (U, UM ) —2 Hy(V, V\{y})

/ / =

H, (8", 8"\{x;}) «—— H, (5", 8"\ f1 —7 Ha(S" S"\{})

\ 1 [~

n s n
fx Hu(5")

It’s important to understand what these maps are, so let’s go through them. First, we have two

maps induced by the inclusions (5", S\ f~1(y)) — (5", S"\{x;}) and (U;, U;\{x;}) — (5", S"\f~!

Next, from the long exact sequence of the pair (5", S"\{p}) for any point p € S", we get

= Hy(S™\{p}) — Ha(S") = Ha(S",S"\{p}) — Hu—1(S"\{p}) —

where the middle map is an isomorphism because S"\{p} is contractible. And finally, by using
excision with X = §", A = §"\{x;} (which is open) and Z = S™\U; (which is closed, so int(A) o
cl(Z)), we have

Hy (U, Ui\{xi}) = Ha(S", S"\{xi})

The upshot is that we have isomorphisms H, (U;, U;\{x;}) = H,(S") = Z and H,(V,V\{y}) =
H,(S8") = Z, so we can define the local degree of f at x;, written deg(f|x;), as the degree of f, :
H,(U;, U\{x;}) — H,(V,V\{y}). Moreover, using the diagram we have the following proposition:

Proposition 12.2. Given f : S" — S" and y € S" with f~1(y) = {x1,...,x,} finite, then

deg(f) = ) deg(flx)

Proof. The main idea of the proof is to use the commutative diagram to write H,(S", S"\f~1(y))
as the direct sum @, H,(U;, U;\{x;}) with the given inclusion maps. Then after some diagram
chasing the degrees add. O

Exercise: Compute the degree of f; : S! — S! given by f; : z — 2K,

12.1.1 Maps of Arbitrary Degree

Another thing you should be familiar with is with constructing maps f : S — S" of arbitrary
degree k € Z for all n > 1. There are two ways of doing this, first with wedge sums (which
generalizes) and second with suspensions (which I think is cleaner)

First, take k disjoint open n-disks D7, ... D} < S§", and consider the quotient
s"—s"/(sm| D ~\/$"
i i

Next, for each S" in v;S", take the map f; : S" — S" of degree +1, depending on if k is positive or
negative. From the local degree, taking the composition of each f; with 7 givesamap of >, +1 = k.

Another way to do this is with suspensions. First, define the cone C(S") = S" x I/(S" x {1}).
Notably, this has base S§ = S" x {0} and is contractible because it deformation retracts onto the
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point at the top. Also, S(5") = CS"/Sj. This means that from the long exact sequence of reduce
homology for the pair (CS”, Sf), we have

-+ = Hy11(CS") — Hy1(CS", 8§) = Ha(SG) — Ha(CS") — -

where we get an isomorphism because CS" is contractible. This is just the isomorphism H,,,1(S(5")) =
H,(S"), but we know that the induced map Sf : S"*! — S"*! gives a commuting diagram

Hy1(S"1) —= Hu(S")

|5 2

~

H, (8™ —— H,(S")

Thus deg Sf = deg f, so we can construct a map of arbitrary degree on S! and then suspend to the
desired dimension.

12.2 Intersection Theory

We can also define the degree of a map more generally by using intersection theory. Similar to the
mod 2 case, we suppose f : X — Y is transversal to Z = Y. Then f~1(Z) is a finite number of
points, each with an orientation number —1 or +1 depending on the preimage orientation. The
intersection number I(f, Z) is the sum of the orientation numbers.

The orientation number at a point x € f~!(Z) is defined as follows. If f(x) = z then transversality
gives

Since d f, must bean isomorphism onto its image, the orientation of X provides an orientation of
dfyTx(X). Then the orientation number at x is +1 if the orientations on df,T(X) and T,(Z) "add
up" to the prescribed orientation on Y (in the same order), and —1 otherwise.

Definition: If M", N" are oriented n manifolds with amap F : M — N, and either M is closed and
N is connected, or just if F is proper, then we can define

deg(F) = I(F,{q}) qeN

To see that this makes sense, consider a regular value y € N with F A {y}. This means there is some
connected neighorhood V of y that is evenly covered by F~1(V) = | J; U;, and each F|y, : U; — V
a diffeomorphism. Thus

deg(F) = I(F, {y}) = ) sgndet DF|,

1

Note that the sign of the determinant is continuous, so this definition is locally constant. Therefore,
it is constant on a connected manifold N provided that some regular value exists, and this is
guaranteed via Sard’s Theorem.

Exercise: Think about how this related to the local degree.

Theorem 12.1. Even dimensional spheres do not admit non-vanishing vector fields.
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Proof. Viewing the tangent space T,S" as R", we see that a tangent vector to p € §" is a perpen-
dicular vector. Then by normalizing, we can produce a homotopy between 1 and —1, which only
works if deg(—1) = (—1)"*! = deg(1). O

Theorem 12.2. If F : M — N is a proper, nonsingular map with deg(F) = +1 between orientable,
connected manifolds, then F is a diffeomorphism.

Proof. Because F : M — N is a proper nonsingular map, it is a covering map. Thus because each
neighborhood is evenly covered,

| deg(F)| = #F~'(y) = 1
so we see F is bijective. Therefore, F is a diffeomorphism. O

Theorem 12.3 (Hopf Degree Theorem). Let M" be a connected, closed, orientable manifold. Then Fy, F; :
M — S" are homotopic only if deg(Fy) = deg(Fy).

For S" degrees, this is the converse of the statement that homotopic maps induce the same map on
homology, so they have the same degree. The proof is involved and I don’t think it is not tested
on the qual; the result may come up occasionally however.

12.3 Integration

If M", N" are connected, orientable manfiolds and F : M — N is proper, then we have a commu-
tative diagram

H}(N) —— HX}(M)

I I

]RfHR

The homomorphism R — R is given by multiplying by some real number d, and we define
deg(F) = d. That s, d € R such that

JM F*w = deg(F) JN w

for some orientation form w € QF(N).

Lemma 12.4. If F : M — N is a diffeomorphism, then deg(F) = £1.

Proof. F can either preserve or reverse orientation, so the sign of the integral is either changed or
remains the same. ]
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12.4 Proof of Equivalence

Given F : M — N a proper map of connected, orientable n-manifolds, suppose

JM F*w = deg(F) wa

for some orientation form w € )} (N). By Sard’s Theorem, there is a regular value y € N. This
means there is a connected neighborhood (V,y) which is evenly covered by the neighorhoods
(Uj, x;) in M, where the U; are mutually disjoint and map diffeomorphically to V.

Now select a form w € () (V) which integrates to

szl
14

Note that we can write the pullback F*w € ) (M) as

Frw = ZF*w|ui
i
and we have
J F*w|u]. =+1
U;

because F|y, : U; — V is a diffeomorphism. And the sign depends on if DF,, preserves or reverses
orientation at x; € U;, so we see

fM Frw = Z Lj F*wl|y, = deg(F) wa = deg(F)

Thus this degree is exactly the intersection number I(F, {y}), so the intersection theory definition
is the same as the integration theory.

12.5 Problems

12.5.1 Basic Definitions and Constructions

Fall 2012, #4
(a) Show that for any n > 1 and k € Z, there exists a continuous map f : S" — S" of degree k.
(b) Let X be a compact, oriented n-dimensional manifold. Show that for any k € Z, there exists
a continuous map f : X — S" of degree k.

(a) For any k # 0, choose |k| disjoint open sets Uy, - - - , Uy, each diffeomorphic to B¥ (a k-cell).
Consider the map 77 : §" — §"/ (S" — (U u -+~ U Upy)) = \/5_; S". Note that 7 has degree
1 since it maps S to \/*_; §" maintains the same orientation for any open neighborhood of
any x € S". We now construct f : \/f:1 S§" — §" such that if k > 0, each S§" is mapped to
S§" via the identity, and if k < 0, we map each S" is mapped to 5" by swapping one of the
signs. Since the degree of a composition is the product of the degrees, we note that f o 77 has
degree k, as desired.

For k = 0, we just take any constant map.
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(b) Since X is deformation retracts to S”, we do the same thing as above: take |k| disjoint open
sets, define the map 7 : X/ (X — (Uy u Uy U Up)) = \/*_, §" which has degree 1 again,
and then take the map f described in part (a)

Spring 2013, #7 Let F : S" — S" be a continuous map.
(a) Define the degree deg(F) of F and show that when F is smooth

deg(F) fn w = Jn F*w

for all w € O*(S").
(b) Show that if F has no fixed points then deg(F) = (—1)"*1.

(a) The degree of F is the number deg(F) such that given a generator [«] of H, (S"), we have
F.[a] = deg(F)[«]. In other words, F; is the multiplication by deg(F) map on top homology.
So, we note that if we view S" as a n-cycle, then we have

J F*w=f wzdeg(F)J w
n F*SVI n

as desired (since F.S" is a deg(F)-fold cover of S").
(b) Note that, via Lefschetz theory, if F has no fixed points, then L(F) = 0. However,

0= L(F) = an(—l)itr(l-"* : H;(S") — H;(S™))
i=0
= tr(Fy : Ho(S™) — Ho(S™)) + (—1)"tr(Fs : Hy(S") — Hy(S™))
=1+ (—1)" deg(F).

Spring 2014, #3 Let S” be the unit sphere. Determine the values of n > 0 for which the antipodal
map S" — S§",x — —x is isotopic to the identity.

An isotopy is homotopy connecting two given homeomorphisms. We first consider the case 7 is
odd, where in this case we will explicitly construct such a homotopy H(v,t) for v € §",t € [0,1].
Since n + 1 is even, consider H(v,t) = M;v, where M; is the (n + 1) x (n + 1) block diagonal
matrices with block diagonal entries

cos(rtt)  sin(rtt)
| |

—sin(rtt) cos(rtt)

and zeroes everywhere else. We note that for every t, M; is a diffeomorphism, and that moreover,
My = I (the identity) and M; = —I (the antipodal map). Thus, for n odd, we have the antipodal
and identity being isotopic.
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For the case when 7 is even, we will use the invariance of degree under homotopy to show that
these two maps are not homotopic. Recall that the antipodal map has degree (—1)"*! which equals
—1 when 7 is even. Suppose they now that they are isotopic. Let id be the identity and A be the
antipodal map. In this case, we have id* = A*, which means that given any n-form w, we have,

an = fnid*(w) = .. A (w) = deg(A)fnw = —fﬂw

SO Ssn w = 0 for any w. In particular, if we let w = x1dx; A - - - A dx,,, we have by Stokes that

Jw—J dw—f dxy A Andx, >0
n Bn+1 Bn+1

Thus, in this case, the identity and antipodal maps are not isotopic. n

12.5.2 Cohomology Ring

Theorem 12.5 (Universal Coefficient Theorem for Cohomology). If a chain complex C of free abelian
groups has homology groups H,(C). Then the cohomology groups H"(C; G) of the cochain complex
Hom(C,,, G) are determined by the split exact sequences

0 — Ext(H,_1(C), G) — H"(C; G) %> Hom(H,(C), G) — 0

This implies that if M and N are closed, connected, oriented n-manifolds and f : M — N is a
continuous map, then there is a commutative diagram

H"(N) —— Hom(H,(N),Z)
& |Hom(7,2)
H"(M) —— Hom(H,(N), Z)

whre the horizontal rows are isomorphisms since H,_1(M) and H,,_1(N) are free, so

Ext'(H,_1(M),Z) = Ext'(H,_1(N),Z) = 0

Therefore if f, on top Homology is multiplication by some integer, then f* on top Cohomology is
multiplication by the same integer. More formally, f* : H"(N) — H"(M) will map a generator of
H"(N) to deg(f) times a generator of H"(M).

Spring 2016, #5 Let M be a compact oriented n-manifold with de Rham cohomology group
Hl,(M;R) = 0 and let T" be the n-dimensional torus. For which integers k does there exist a
smooth map f : M — T" of degree k?

Spring 2018, #8 Determine all of the possible degrees of maps S? — S! x S'.
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12.5.3 General Problems

Fall 2013, #3 Let M, N c R?*! be two compact, smooth, oriented submanifolds of dimensions
m and n, respectively, such that m +n = p. Suppose that M n N = (&. Consider the linking map

A:Mx NS, Axy) = é:;

The degree of A is called the linking number (M, N).
(a) Show that £(M, N) = (=1)m+ D+ (N, M)
(b) Show that if M is the boundary of an oriented submanifold W < IR” +1 disjoint from N,
then ¢/(M, N) = 0.

Fall 2017, #7 Let M be a smooth, compact, connected, oriented n-dimensional manifold (without
boundary).
(i) Show that if the Euler characteristic of M is zero, then M admits a nowhere vanishing
vector field.
(ii) If M is a surface of genus g, then what is the min, (#zeros of v), where v ranges over vector
fields on M whose zeros are isolated and have index +1? Give a proof.

13 Lie Groups

The purpose of this section is mainly to write out one key result — the parallelizability of Lie
groups. We'll also add some discussion of how to recognize Lie groups and about when subman-
ifolds of a Lie group is a Lie group. See Peterson’s notes for more details, especially regarding
polar decomposition.

A Lie group is a smooth manifold with group structure. Essentially, we have everything a smooth
manifold has, in addition to the following smooth map: P : G x G — G where (g, h) — gh.

We also have the map L, : G — G where h +— gh, the left multiplication map (also called left trans-
lation). This map is a diffeomorphism (inverse is Lg—l), and is perhaps the most useful property
of Lie groups (for the Geometry qual at least).

The main reason for the creation of this section is the following result, which has appeared in some
quals recently.

Theorem 13.1 (Parallelizability of Lie groups, Fall 2017 #2, Fall 2022 #2). Lie groups are parallelizable.

Proof. We show that G admits a global frame.

Consider the vectors v, ..., v, which form a basis for T,G. We define that wy, ..., w, which form
a basis for T, G.

Consider a vector v, € T,G, and define the vector v = dL(ve). Define the vector field X such that
X(g) = vg.

To see X is smooth, pick 7 : (—€,€) — G such that y(0) = e and 9/(0) = v;. Then consider the map
¢ : G x (—€,€) — G such that

(& 1) = P(g,7(t) = Lgov(t).
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Then, we note that
8 6t t:0q> g’ ‘

Letting (ve)1, . . ., (ve)n be a basis for T, G, as Lg is a diffeomorphism, we note that dL is an isomor-
phism, so (vg)1, ..., (vg)y is a basis for T;G. Thus, Xy, ..., X, is a global frame for G. O

Note that this result implies all Lie groups are orientable. We also note that all of these vector
tields are left-invariant, which is important for Euler characteristic considerations.

There is one more result that is useful: Lie groups always admit a nowhere vanishing vector field.
We will go into the construction of this vector field, however it does not immediately imply that
all Lie groups have trivial Euler characteristic via Poincare-Hopf. In order to apply this result, we
need our Lie group G to be homotopically equivalent to a compact Lie group. For example, SL,(C)
is homotopically equivalent to SO, (C) (one way to show this is via a deformation retraction using
polar decomposition).

Theorem 13.2. Lie groups admit a nowhere vanishing (left-invariant) vector field.
Proof. Define the vector field X : G — TG where

X(h) = dLy(X(e)).
This is left-invariant as

dLg(X(h)) = dLg(dLy(X(e)) = dLgn(X(e)) = X(gh).

14 Flows and Lie Derivatives

Most of this content is from Lee Chapter 9, though with far less detail.

14.1 Flows
14.1.1 Integral Curve Precursors

Definition 14.1 (Integral Curve). If M is a manifold (with or without boundary) and V is a vector field
on M, an integral curve of V is a smooth curve vy : | — M with

Y () = Vo

Remember that 9/(t) = 7*(%). We say that (0) is the starting point of .

As a baby version of the Fundamental Theorem on Flows (which we’ll get to), one can cook up a
curve integral to V from any starting point p € M.

Proposition 14.1. V is a smooth vector field on M. For each p € M, there is a smooth curve 7y : (—¢, &) —
M that is an integral curve of V starting at p.

In many problems, it is more convenient to cook up an integral curve in an open subset of R"” and
push it forward to an integral curve on M by a chart.
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Proposition 14.2. Let F : M — N be a smooth map and X, Y vector fields on M and N respectively. Then
X and Y are F-related iff for each integral curve <y of X, F o vy is an integral curve of Y. Recall that X and
Y are F-related if F,t X =Y.

14.1.2 Flows

Definition 14.2. A global flow is a continuous left R-action on M; that is, a continuous map 6 : R x
M — M satisfying:

 Foreach t define 6; : M — M by 0;(p) = 0(t, p). Then
0t 065 = 115, 6o = Ly

The maps 0y are diffeomorphisms.

e Foreach p € M, define a curve ") : R — M by 0(P)(t) = (t, p). The image of this curve is the
orbit of p under the group action.

To each global flow 0 : R x M — M there is an associated smooth vector field V, = 8(P)'(0) called

the infinitesimal generator of 0. V “generates” 6 in the sense that each curve 8(?) is an integral curve
of V.

The utility of flows comes from being able to go backwards; that is start from a vector field V on M
and find a flow 6 that has V as its infinitesimal generator. There are insurmountable obstructions
that keep us from always being able to find a global flow, since one can cook up a vector field on
(0,1), say, which has an integral curve that might blow up. Check out Lee example 9.9 and 9.10.
I could see a qual question asking us to provide such an example so this might be good to check
out.

Example 14.1 (Integral curve that can’t be extended). If M = R? and W = xza—ax, then one can check
that the integral curve of W starting at (1,0) is

78 = ((1-1H710),
which cannot be extended past t = 1.

But one can do the next best thing and define a maximal flow (one that cannot be extended to a
larger domain like D = R x M with D®) = {t : (t,p) € D} containing 0). You can adjust the
definition of maximal flows to get the one for global flows by replacing R x M with D.

Theorem 14.1 (Fundamental Theorem on Flows). Let V be a vector field on M (WITHOUT BOUND-
ARY). There is a maximal flow 6 : D — M with infinitesimal generator V. We have the following
properties:

o 0) is a unique maximal integral curve of V starting at p.
* Some others that aren’t too important but you can read them in Lee.

Flows often show up when we want to find a diffeomorphism on a manifold M that sends some
collection of points to another collection, or rotates tangent vectors, etc. One might do this by
flowing our points of interest along a well-chosen vector field. Though we really want our flow
to exist for all time for something like this to work. A vector field that generates a global flow is
called complete. All we really need to know is this:
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Theorem 14.2. Every compactly supported smooth vector field on a smooth manifold is complete. In
particular every smooth vector field on a smooth compact manifold is complete.

Here are a couple qual questions that involve flows (but not Lie Derivatives).

Spring 2011, 1. If V is a smooth vector field on an n-manifold M and V), # 0 for some p € M,

show that we may find a chart (U, x) around p with V = a—il

Comments: This is Theorem 9.22 in Lee. This comes up a lot. It in particular tells you that you
can extend a vector field locally to a basis. Although there might be an easier way to establish
this (yes there is. V = Vla%. Some coordinate is nonzero in a small neighborhood, say V!. Then

V, <.
7 Oxy 7
Definition 14.3. A commuting frame is a local frame (E;) for M such that [E;, E;] = 0.

Theorem 14.3 (Lee 9.46). Let M be an n-manifold and (V1,..., Vi) a linearly independent k-tuple of
smooth commuting vector fields on an open W < M. For each p € W, there is a smooth coordinate chart
(U, (x*)) centered at p so that V; = %fori =1,...,k

ey % is a local frame). Compare this with Theorem 9.46 about commuting frames.

Further compare this with Frobenius theorem and involutivity (the closure under Lie derivative
condition). 9.46 is just a more involved application of flows.

Fall 2010, 1 Let M be a connected smooth manifold. Show that for any two non-zero tangent
vectors v; € Ty, M and vp € Ty, M, there is a diffeomorphism ¢ : M — M such that ¢(x;) = x2
and d¢(vq) = vs.

We show the existence of diffeomorphisms ¢, y, v : M — M such that ¢y, (x) = v, Ppo,w(z) = z
and d¢,,(v) = w for any choices x,y € M and v,w € T,M. Our diffeomorphism ¢ is then ¢ =

¢d¢(v1),vz © Py xz-

We first show that, for x,y € M, the relation x ~ y iff there exists a diffeomorphism ¢, : M — M
such that ¢, ,(x) = y is an equivalence relation. It is clearly reflexive (take ¢, = id), clearly
symmetric (given ¢y, we get ¢, » = ¢y ;), and clearly transitive (given ¢, and ¢, ., we get ¢, . =
¢y,z © Pxy). As M is connected and equivalence classes partition the manifold M, if we can show
the equivalence classes are open, we must have only one equivalence class, implying the first
result.

Let x € M be given, and consider a coordinate patch (U, = (x',...,x™)) of x such that U is
homeomorphic to B(0,1) ¢ R" and (x) = 0. Take V = V < U such that V is homeomorphic
B(0,7) = R" forsome r < 1. Lety € V be givenand let ¢ = (c!,...,c") = ¢(y). Consider the vector
field X = ci%, which is well-defined on U. Letting & be a bump function such thata =1 on V
and supp a < U, we note that a is compactly supported. Thus, letting X = a X, we have a globally
defined compactly supported vector field, thus we have a global flow 6;. Note additionally that

Xy = X.

Noting that the integral curve y(t) = ~1(tc) is an integral curve of X satisfying y(0) = x and
v(1) = y, we have 01(x) = y. We define ¢, = 01. Thus the equivalence class containing x is open
and by the arguments above, this implies it is all of M.

We now show the second claim, first proving it in R" for n > 2. Let v, w € R" be given, and define

A= % > 0. If v, w are colinear, define F; = Alidgrs. If not, P be the plane spanned by v and w
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with an orientation so that {v, w} is a direct basis. Let 6 be the oriented angle between v and w. If
w = —Av, instead consider a third vector w’ which is not colinear to v and consider the plane P
spanned by v and @’ and take § = 7. For t € R, define R; to be linear isomorphism of R"” such
that its restriction to P is the rotation of angle 0, and its restriction to P is the identity map. Take
F, = AR,

By construction, F; is a 1-parameter family of diffeomorphisms, so let X be its infinitesimal gen-
erator. Letting « : R” — IR be a bump function such that « = 1 on B(0, 5) and & = 0 on B(0, 7)°,
we can define the vector field X via X = aX. Consider F; as its flow, then we note that F; has the
desired properties.

To obtain our desired solution in our manifold M, letting z € M be given, there exists some chart
(V,¢)such that V < Uand ¢ : U — R”" is a diffeomorphism with {(z) = 0. By above, there
exists a diffeomorphism f : R” — RR” such that f(0) = 0 and dof(d.p(v)) = d.p(w). Defining
¢ = P~ o foy, extended by the identity outside of V via a partition of unity yields our desired
diffeomorphism. "

14.2 Lie Derivatives

For vector fields, it seems that we just need to remember LyW = [V, W]. I guess it should be
mentioned somewhere that

w([X,Y]) = X(w(Y)) = Y(w(X)) - dw(X,Y).

Definition 14.4 (Lie Derivative of form/covariant tensor field). Let A be a covariant tensor field on
M (this might seem overly general, but this sometimes shows up on the qual; see Fall 2013 Problem 6), and
V a vector field on M. If 0 is the (local) flow generated by V,

d . (6FA), — A
(Lv Ay = L 11q (014), = tim O

This is defined pointwise in the vector fields.

Proposition 14.3 (Properties of Lie Derivatives). The Lie derivative on tensor fields is uniquely deter-
mined by the following properties

(a) L is linear over R

(b) Lyf = Vf for functions (O-tensors) f

(c) Ly(A®B)=LyA®B+A®LyB,

d) Ly(T(X1,...,Xp) = (LyT)(Xy, ..., Xp) + S0 T(X1, ..., Ly(X)), ..., Xx), T a k-tensor.
Specializing to differential forms, we have the extremely useful

Theorem 14.4 (Cartan’s Magic Formula). If V is a vector field on M and w a differential form,
Lyw =iy(dw) +d(iyw),

or more succinctly
Ly =iyd+diy.
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As a consequence Lie derivatives commute with exterior derivatives. However interior multipli-
cation iy certainly does not commute with exterior derivatives!

*It’s possible that Cartan Magic formula works for general covariant tensors too! Exterior deriva-
tive still makes sense. Define it for functions and then extend.

It’s nice to note that the product rule
Ly(w an) = (Lyw) A+ @A (Lyy)

has no sign change because there is no change in grading when Ly is applied.

14.3 Some computation rules

It looks like interior multiplication wasn’t introduced earlier, so I might as well include a couple
rules to simplify computations arising in Cartan’s magic formula.

Interior multiplication is iyw(Vy, ..., Vk_1) = w(V, V1, ..., Vi_1).
Proposition 14.4 (Computation rules for interior multiplication).
(a) i, = 0 (same as d).
) iv(w A7) = (ivw) A+ (=DI¥w A (iyy) (same as d).
(c) If wy,...,wy are 1-forms, then

k
iv(a)1 VANRIRILIVAN (Uk) = Z(—l)iwi(V)wl VANRIMEIVAN (f)i N s N Wk
i=0

14.3.1 Problems

Fall 2010, 4
(a) Let fo, fi : M — N be smooth. Define the notion of a chain homotopy between f; and f;".
(b) Let X be a smooth vector field on compact manifold M. Let ¢; : M — M be the flow
generated by X. Find an explicit chain homotopy between ¢; and ¢;. Hint: Recall Cartan’s
magic formula.

Spring 2011, 2
(a) Show Cartan’s magic formula: Lx = dix +ixd.
(b) Use this to show that a vector field X on IR® has local flows preserving volume if and only
if it has divergence 0.

Spring 2018, 2 Let ®y, Ps : R x S? — 52 be two global glows on the sphere S%. Show that
there is an € > 0 and a neighborhood U of the north pole, V of the south pole, and global flow
¢ : R x S — S? such that ®(t,q) = ®n(t,q for t € (—¢,€), g € U and P(t,q) = Ps(t,q) for all
te(—e€)andge V.
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15 Practice Qual Solutions

15.1 Fall 2020

Fall 2020, 1 Let x1,xp,...,x; and y1,Y2,...,yx be two sets of distinct points in a connected
smooth manifold M with dim(M) > 1, and v, vy, ..., vy and wy, wy, . . ., wy be the corresponding
two sets of non-zero tangent vectors at these points. Show that there is a diffeomorphism f of M
such that f(x;) = y; and dfy, (v;) = w; fori =1,... k.

This problem is long. Here is a good resource in case you want to see a different write-up.

We first prove there exists contractible open subsets U, ..., Uy with x;,y; € U;, such that their
closure is contractible and are pairwise disjoint. We prove this by induction.

For k = 1: if x; = y;, take a small contractible neighbourhood of x; for U;. If x; # y;, take any
small tubular neighbourhood of an injective path joining x; and y; for Uj.

Assume xq,...,Xk41,Y1,- - -, Yk+1, are as in the statement of the Lemma. By induction hypothesis,
let Uy, ..., Uy be disjoint contractible open subsets such that x;,y; € U; for 1 < i < k, and whose
closures are pairwise disjoint. Take them small enough such that x4,1,yx41 ¢ U; for any i. If
Xk+1 = Yk+1, any small contractible neighbourhood of x4, works for Uy;;. Assume then that
Xkt1 # Yis1. Since Uy, ..., Uy are contractible, M\ (U; U --- U Uy) is homotopy equivalent to
M\{k points}. In particular, it is path-connected. Since M = M\ (U; u - - - U Uy) is an open subset
of M, it is then a connected manifold of dimension 7, with xy1, yx+1. Apply the k = 1 case to M
in order to conclude the proof of our claim.

Next, we prove that there exists First, prove that there exists diffeomorphisms f; : M — M com-
pactly supported on U; (and extended to identity elsewhere) such that f;(x;) = y; and dfy,(v;) = w;.
This is written in detail in our write-up of Fall 2010, 1. We thenlet f = fj0--- o f;. .

Fall 2020, 2 Let M be a smooth manifold of dimension n. Let T*M := | |, .\ T-M be the
cotangent bundle, where T;; M is the dual of the tangent space T,,M, and let 7 : T*M — M be the
natural projection such that 77(¢) = m for ¢ € T,;; M. Let x = (x1,...,x,) be local coordinates on
U < M. Then we endow 71~ (U) with coordinates (x1,..., Xn,Y1,---,Yn), such that the element
¢ € 7 H(U) with 7t(¢) = m is written as Y., y;dx;(m).
(a) Show that T*M is a smooth manifold with respect to the local coordinate charts defined
above.
(b) Define the 1-form A on the cotangent bundle T*M as follows: for any tangent vector v €
Tp(T*M) at ¢ € T*M, we set A(¢p)(v) = ¢(d7(v)).
Find the explicit expression of A with respect to the above local coordinate chart. Use this
to show that A is smooth.
(c) Find the explicit expression of dA and its k-th exterior powers for all k > 2 with respect to
the local coordinate chart above. Use this to show that T*M is orientable.

(a) There are many resources for this, see for one.
0 0

(b) To find? an explicit expression of A, we see what A does to the basis vectors, Er However,

2)\ is known as the tautological 1-form of T* M. To see a better explanation, see Lee Proposition 22.11.
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(©)

we see that as dﬂ(e%) = a% and dﬂ(aiyi) = 0, we have

A¢p) (561/1> =¢ (dn (;%)) = ¢(0) =0
A@) ((;;) —¢ <d7-c <ai)> o <ai) .

A= Z yidx;.

and
Thus,

A then is clearly smooth because its component functions in these coordinates are linear.

Given the above, we note that

dA =d ) yidx; = Y dy; A dx;.
i i

Thus,
(d/\)k = Z kdyi, ~dxip n--- A dyi A dx;,.

1Sl'1<'-~<l'k<ﬂ

In particular,
(dA) =nldyy Adxy A -+ Adyn A dxy,.

Thus, (dA)" is a nowhere vanishing top-form of T*M, implying T* M is orientable.

Fall 2020, 3 Let M be a smooth manifold with smooth boundary ¢M and N be a smooth mani-
fold without boundary. Assume that f : M — N is smooth (this includes smoothness at points
of dM) so that the tangent map dfy : TxM — Ty, N is well-defined (including at points of 0M).
Let y € N be a regular value for both f and f|sum.

(a) Show that M; := f~(y), if not empty, is a smooth submanifold with boundary in M such

(b) If we only assume that y is a regular value for f but not for fy)1, does the conclusion of (a)

that the boundary 0M; = (fam)~(y) = M; n 0M is a submanifold of IM.

still hold?

(a)

If you’d like to see another write-up, see page 61 of Guillemin & Pollack. First, notice that the
interior Int(M) of M is a smooth manifold without boundary, so My N Int M = (finmy) ()
is also a smooth manifold without boundary. Therefore it is enough to look at M; around a
point x € dM.

First, move everything in local coordinates. By taking local coordinates in N, we can view
a neighborhood of y as a ball in R", centered at 0 (i.e. we can assume y = 0). Similarly, by
taking slice charts in M, we can view the neighborhood of x in M as a subset of H" = {x €
R"|x,, > 0} such that x = 0. Moreover, since f is smooth at 0, by shrinking the neighborhood,
we can assume that f is defined and smooth in a ball B around 0.

Now, let S = f~1(0) n B. Then by the Regular Value Theorem, S is a smooth manifold of
codimension 1. Define also 77 : S — R : x > x,,. Notice that B n M; = 71~ 1[0, +-o0]. We will
now show that 0 is a regular value of 7r. For that, notice that since 0 is a regular value of both
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f and f|am, both d fo and d(f|am)o are surjective, so their kernels have the same codimension
n. But that means that these kernels have different dimensions (because the lie in To0M and
ToM, which have different dimensions). But that means that ker dfy # kerd(f|om)o. That is
ToS = kerdfy does not lie in ToM entirely, since d fo|1,om = d(f|om)o. That means that locally
there exists a vector field X € TyS, X ¢ TodM (or in other words, X;;, # 0). But notice that
dmy(X) = X # 0, so dr is surjective. That means, 0 is a regular value of 7.

The proof then follows from the following lemma: Suppose that S is a manifold without
boundary and that 77 : S — R is a smooth function with regular value 0. Then the subset
{s € S| 7t(s) = 0} is a manifold with boundary, and the boundary is 7=1(0).

This lemma is true as the set 77(s) > 0 is open in S and is therefore a submanifold of the
same dimension as S.This is true here as, around 0, 77 is locally equivalent to the canonical
submersion near 0. But the above lemma is clear when 7t is the canonical submersion.

(b) The answer is no. For a counterexample, let M = {y > 0} c R?and f : R? - R : (x,y) — .
Then it is easy to see that as f is linear, df = f, so f is a submersion. In particular, y = O is a
regular value of f. At the same time M = {y = 0}, so f|om = 0, which means that 0 is not a
regular value of f|apm.

In this notation, M; = f~1(0) = {y = 0} = dM. Then M is a manifold without boundary,
but M| n M = oM # & = 0dM;j. So the conclusion does not hold.

Fall 2020, 4 Let S be a closed subset of a smooth manifold M that has a second countable topo-
logical basis. Show that for any positive integer n, there is a smooth map f : M — IR” such that

S=f _1(0).
This is Theorem 2.29 in Lee. n

Fall 2020,5 Let M, N c RP*! be two compact, smooth, oriented submanifolds (without bound-

ary) of dimensions m and n, respectively, such that m + n = p, and suppose that M n N = .
Let [(M, N) be the degree of the map

A:MxN — 8P, /\(x,y):H.

(a) Show that [(M, N) = (—1)"+D+D (N, M).
(b) Show that if M is the boundary of an oriented submanifold W < RP*! which is disjoint
y )
from N, then I(M, N) = 0.

(@) Denote Ajsasthemap A : M x N — SP. Consider the composition of maps Ay = AoAp 0S8,
where S : N x M — M x N is the map s(n,m) = (m,n) and A is the antipodal map on S”.
Note that a flip and a reflection are both orientation reversing diffeomorphisms, implying
their degree is —1. As A is the composition of p + 1 reflection, we have deg(A) = (—-1)P*! =
(=1)"*"+1 and as S is the composition of mn flips, we have deg(S) = (—1)™". Thus,

I(N,M) = deg(An) = deg(AoAnoS) = deg(A) deg(An) deg(S)
_ (_1)m+n+1l(M/ N)(_l)mn _ (_1)(m+1)(n+1)l(N/ M).
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(b) Let F be themap, F: W x N — S” where
w—n
Fw,n) = ———.
R Tl

We note that A = 0F = Foiy whereiy : M x N — W x N is the inclusion map, as (W x
N) = 0W x N = M x N as N has no boundary. Then, letting w be a volume form in S¥, we
have, via Stokes,

deg()\)f w = J Nw = J iy F*w
sp MxN MxN

:f dF*wzf F*(dw)zf F*(O)zf 0=0,
WxN WxN WxN WxN

where dw = 0 since w is a top form. Thus deg(A) = 0 as (¢, w # 0 as w is a volume form.

Fall 2020, 6 Let X be a topological space and let Y = X x [—1,1]/ ~, where

(x,—1) ~ (x,—1) forallxe X
(x,1) ~ (x,1) forallxe X

Describe the relationship between the homology groups of X and Y.

Y = S(X), the suspension of X. Follow the argument as in 10.1 to get Hy(Y) = Hy_1(X) forallk. m

Fall 2020, 7
(a) Describe a cell decomposition for X = RP* such that its 2-skeleton X = RP2. (This
means that X is obtained from X(?) by attaching only 3- and 4-dimensional cells.) Include
a careful description of the attaching maps
(b) Use your cell decomposition to compute Hy(X; Z) and Hy(X, X®);Z) for all k > 0.

(a) We construct a CW complex for RP" which has X(k) = RP* for every 0 < k < n. Our CW
complex will have exactly 1 k-cell for 0 < k < 1, denoted as ef. Our attaching maps are

(Pk . Sk—l N X(k—l) _ RPk_l,

the double cover of RP*~1, where x, —x +— [x]. To compute the boundary map, di, we note
that we have the composition

gk=1 % Rrpk-1 4, RPF1/RPF2 ~ gk=1)

with g a quotient map. Note that the map g¢ restricts to a homeomorphism from each com-
ponent of S¥~1 — Sk=2 to RP¥~1 — RP*~2, and these homeomorphisms are obtained by from
each other via precomposing the antipodal map of S¥~1, which has degree (—1). Hence,

0 kodd,
2 keven.

deg(qpr) = deg(id) + deg(ant) = 1+ (—1)F = {

In the case of RP?, this leaves us with the CW complex

d3EO dzEZ dl =0

0-2%2%7 z z Z 0.
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(b) From the above, we note that for k = 0,1, 3, ker(dy) = Z and im (dy) = 0, and for k = 2,4,
ker(dy) = 0 and im (dy) = Z <2ek_1>. Also note that im (ds) = 0. Thus,

Z k=0,
He(X) = <))oz k—13,
im (A1) 0 otherwise

To compute Hi(X, X (2), Z), we have the cellular complex

LG G X aX) | GX)
Ca(X@) ~ G(X®) T G(X®) T G(XD) T Co(X@)

0

However, note that, by construction,

k 0 otherwise.

Thus, we obtain the CW structure
0-2%2 7% 0 ,0-0-0.

Thus, we get

Hi(X, X®) =

0 otherwise.

ker(dy) |Z/2Z k=3,
im (diy1)

Fall 2020, 8 List all the 3-sheeted connected covering spaces of S! v S!. Which ones in the list
are not normal?

One approach to classifying the 3-sheeted covering spaces is the use the Galois correspondence
with index 3 subgroups of 711(S! v S!), but because the group structure of Z * Z is sufficiently
complicated, it is actually more straight forward to find the covering spaces directly.

Our approach uses the fact that a covering space of a CW complex can be given a CW complex
structure by lifting the characteristic maps to the covering space (see Hatcher Appendix: Topology
of Cell Complexes Exercise 1). So in our case, a 3-sheeted connected covering corresponds to a
connected graph with three vertices each of degree four; moreover if we label the edges of S! v S!
as a and b, then each vertex of the covering space must have an incoming and an outgoing a edge,
and an incoming and outgoing b edge.

For just one type of edges, i.e. either for a edges of b edges, there are three configurations that
satisfy the directed degree requirement. Either a simple loop is attached to each vertex, there is
one simple loop and one two cycle, or there is one three cycle. So we can combine these three
types of orientations up to orientation, and with the requirement that the graph is connected.

First, there are two covering spaces formed with two three cycles, with the same and opposite
orientation. When one edge type is given a three cycle, the other edge type may also be given three
simple loops or one simple loop and one two cycle. This gives four possible covering spaces, based
on which edge type has the three cycle; note that reversing orientation here gives the same graph.
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And finally, both edge types can be given a two cycle and simple loop configuration. This gives
one last covering space, and the orientation does not change the graph. All other combinations do
not produce a connected graph, so these are all the covering spaces.

Finally, we can see that only the first two covering spaces are normal, because the group action
there is transitive. Below is a visualization® of the covering spaces, the first two being the normal
ones.

Fall 2020, 9 Let X5 be a compact oriented surface of genus 5 without boundary. Does there exist
an immersion f : T2 — X3? Justify your answer.

Suppose such an f existed. As T? and Y5 are both 2-dimensional manifolds, f is then a local
diffeomorphism between compact spaces, and as such? is a covering map. However, then 0 =
X(T?) = kx(Z5) = k(2 —2%5) = —8k, where k is the number of sheets of our covering map. This
implies k = 0, which is impossible. "

Fall 2020, 10 Show that the Euler characteristic of the special linear group SL(n,R) with n > 1
is zero. Here for a topological space X its Euler characteristic is

x(X) := > (~1)'rank(H(X)),

i

assuming that ), rank(H;(X)) < oo.

We show that SL,(IR) is homotopy equivalent to SO(#n), and since (clear from the definition given)
Euler characteristic is invariant under homotopy, x(SL,(R)) = x(SO(n)). Letr : M,(R) — SO(n)
by A = UP — U, where UP is the polar decomposition of A so that P is positive definite and U
is unitary and therefore U € SO(n). Leti : SO(n) — M, (R) be the inclusion. By uniqueness of
the polar decomposition, i o r = id, so we show that r o i is homotopy equivalent to id. To do this,
consider H; : SL,(R) — SL,(R) defined by Hi(A) = g farim;- Wenote det((1—#)A +tU) + 0
as
(1—-t)A+tU =U((1 —t)P +tI).

As P is a positive definite matrix, and the convex combination of positive definite matrices is
positive definite, and det(U) # 0, we have that det((1 —t)A + tU) # 0. Additionally, note
t,det (H;(A)) = 1. Moreover, we note that Hy = id and H; = r o i, as desired.

Since SO(n) and SL,(IR) are homotopy equivalent, they have the same Euler characteristic. More-
over, as SO(n) is a lie group, it is parallelizable and thus admits a nowhere vanishing vector field.

3Taken from Prof. Rahul Panharipande’s solutions here.
4Should prove this statement on exam.
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Since SO(n) is closed (it’s the inverse image of {1} for the map A — AAT ) and bounded, Poincare-
Hopf implies x(SO(n)) = 0. "

15.2 Spring 2021

Spring 2021,1 Without using homology groups or homotopy groups, directly derive Brouwer’s
fixed point theorem (any continuous map f : D?> — D? has a fixed point, where D? is the closed
2-disk) from the hairy ball theorem (any continuous vector field on S? is somewhere 0).

We did not figure this out however here is a solution from Wikipedia, which has yet to fail us. =

Spring 2021, 2 Solve the following problems:
(a) Let F: S"™ — S" be a continuous map. Show that if F has no fixed point, then the degree of
the map, deg F = (—1)"*1.
(b) Show that if X has S*" as universal covering space, then 71 (X) = {1} or Z,.

(a) We show this via Lefschetz theory. Since F has no fixed point, we know L(F) = 0. However,

0 =L(F) = Y (=1)tr(F, : He(S") — Hi(S"))
i=0
= tr(Fy : Ho(S™) — Ho(S™)) + (—1)"tr(Fs : Hy(S") — Hy(S™))
=1+ (—1)"deg(F),

implying our result.

(b) If S?" is a universal covering space of X, then we know that G(5*") =~ 711(X), where G(S*")
is the group of deck transformations of S?". If every deck transformation has a fixed point,
then by the uniqueness of deck transformations, every deck transformation is simply the
identity, so 711(X) = {1}. If not, then by part (a), we know deg(F) = (—1)?"*1, which by the
Poincare index theorem, implies F is homotopic to the antipodal map. Thus, we only have 2
unique deck transformations, implying 71 (X) = Z,.

Spring 2021, 3 Let py, ..., px be n distinct points in IR®. Calculate the integral homology groups
of R?\ {p1,-..,pn}

If n = 0O, then this is just the fundamental group of R which is trivial as R is simply connected.
If n = 1, note that R3\{p} deformation retracts onto S?, which has a trivial fundamental group as
that again is simply connected.

Suppose n > 2. Then, note that R*\{p1,...,p,} deformation retracts onto S*\{qy,...,q,_1} for
some n — 1 distinct points in S2, which is homotopy equivalent to R? — {r1,...,rn—2} for some
n — 2 distinct points in R?.

Follow the same argument as in Fall 2022, 7 to get the fundamental group is a free product of n — 2
copies of Z. .
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Spring 2021,4 Let A% be the k-dimensional skeleton of the n-simplex A,,. Calculate the reduced

homology groups Hi(A,Sk)) for all values of i, k, n.

We first note that, as A, is contractible, H;(A,) = 0 for all i.
Note that fori < k .
A:(A) = Ai(An) =0,

and for i > k, since there are no i-cells, I:Il-(A,(qk)) = 0. It suffices to find I:Ik(A,(qk)). Note, however, the
top homology is always torsion-free (and thus free) since the previous boundary map is always 0.
Thus, noting that

k

X(Hi(817)) = 3 (-1 rank(Hy(837)) = 1+ (~1)* rank(Hy(87)"))
and h
X(H(A)) = é(—l)l#ez - gké(—l)f(’jjf) =1- 2(—1)1 ("),
=1 G4V”<kii>=l+t—ﬁ<kii>
we have

rank(Hy(8{)) = (k " 1),

implying our result.
The combinatorial identity can be proven inductively and the number of i-cells in A, is precisely

number of size i + 1 subsets of {0, ...,n}, which is (”H).

i+1 .

Alternate Solution: We establish
{zuﬂiﬂ:k

0 otherwise

for all i and 0 < k < n by induction on n. The base case n = 0 is clear. Now fix n > 1. Since A is
the disjoint union of n + 1 points, clearly

~ Z" ifi=0,
D) ~ .
0 otherwise

Now suppose k > 1. Since AP is the mapping cone of the inclusion A

exact sequence

(k-1
1

b ) o, A,(qk), we have a long

~ (k= ~ (K ~ (K ~ f— ~ k
S Hz‘(A,(,l_f)) — Hi(Afl_)l) — H(A) - Hi (A% D) - Hi_ (AW

By induction this gives I:L-(Aslk)) = 0 when i # k, implying we obtain a split short exact sequence,
thus

n—1

ﬁk(A,(f)) ~ z(") @Z(k+1) ~ 7).
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Spring 2021, 5 Define the complex projective space CP" to be the quotient of C"*1\{0} by the
relation x ~ Ax for all A € C\{0},x € C""!\{0}. Construct a CW complex structure on CP"
with no odd-dimensional cells and exactly 1 cell in each even dimension up to 2n. Calculate the
fundamental group and the integral homology groups of CP".

We define a CW structure of CP" which has 1 k-cell for each even k between 0 and 2n. Our cell
complex will then be

> 0-0-Z-0—---->0-2Z2—->0->0—...

where the first Z is in grading 2n and the last is in grading 0, and we alternate between 0 and Z
in between these. As all of the boundary maps are 0, the integral homology groups of CP" are the
same as the chain groups. Thus,

Z 0<k<2n, keven

0 otherwise.

Hi(CP") = {

We also note that the fundamental group of a CW complex is completely determined by its 2-
skeleton. In fact, it is a free group, with the 1-cells as the generators and the attaching maps of the
2-cells as the relations. As our construction of CP" has no 1-cell, our fundamental group is trivial.

We now define our CW structure inductively. Note that CP° is simply a point, so we just have
a O-cell. Given CP"!, we claim we can construct CP" by attaching a 2n-cell. To see this, note
that CP"~! = CP", via the inclusion [z, ...,z,_1] — [z0,...,2Zn_1,0]. Additionally note that an
arbitrary point in CP" — CP"! can be represented by (zo,...,z,_1,t), where t > 0 is the real

number /1 — >’ z;z;. This defines a map

" > CP":z = (zo, -+, 2zn—1) ¥ (20, -+, Zn—1,1],

with t = 4/1 — Y, z;z;. The boundary of e*" (where t = 0), is sent to CP" 1. ]

Spring 2021, 6 Define the orientation double cover for any topological manifold. What is the
orientation double cover of the real projective plane RP"?

The orientation double cover for any topological manifold is the unique two-fold orientable cov-
ering space of a topological manifold with orientation reversing non-trivial deck transformation.

We first note that RP" is the quotient space of S” by the antipodal map, and that
Z k=0,k=mnandnodd,

Hy(RP") =< Z/2Z 1<k<n,kodd,
0 otherwise.
So, RP" is orientable if and only if n is odd. We then see that the orientation cover, in this case, is

RRP" L IRP", with opposite orientations on the two copies. So, the non-trivial deck transformation
taking x; — x2, where p(x1) = x = p(x2) is orientation reversing.

When 7 is even, we claim the orientation double cover is S"”, however this is clear as S" is an
orientable double cover of RP", and the non-trivial deck transformation is the antipodal map A,

where x — —x. When 7 is even, we note that deg(A) = (—1)"*! = —1, as A is the composition of
n + 1 negations, all of which being orientation reversing diffeomorphisms. So the non-trivial deck
transformation is orientation reversing. L]
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Spring 2021, 7 Show that S? x S? and the connected sum C P?#C P? are not homotopy equivalent.

We will show that these two spaces have different ring structure.
First, we will show that for closed oriented manifolds M and N of dimension #,

~ H{M@ﬁiN, i<1’l;
Hi(M#N)z{Z( JOHi(N) o

To show this, consider S"~! ¢ M#N =: X to be the disk that M and N are glued by. Notice that
then (X, S"~1) is a good pair and X/S"~1 ~ M v N. Therefore we get an exact sequence of reduced
homologies:
.. — Hi(S"1 - Hy(X) > H(Mv N) — ...
Since H;(S"1) = 0 fori < n— 1, we get an isomorphism
H;(X) ~ Hi(M v N) ~ H;(M) & H;(N).
Now, for the remaining homologies we get the exact sequence:
0 H,(X)~Z—>HMvN)~2Z>—-H, (8" ) ~2Z

— Hy_1(X) > Hy-1(M v N) ~ Hy_1(M)®H,_1(N) - 0

Notice that since M, N and X are all closed orientable, their H,,_; is torsion free. Moreover, com-

puting the alternating sum of ranks, we get that ﬁn_l (X) and H,,_1(M) & H,,_1(N) have the same
rank (and are both free!). Therefore, they are isomorphic.

Now notice that in the case of CP", all homology groups are free, so the cohomology groups are
dual to them. That is,
7%, i=2,
H(CP*#CP?) =<7, i=0,4,
0 otherwise.
That means that the generators of the two copies of H*(CP?) are identified in H*(CP?*#CP?).
Thus, letting a1, a2 be generators of H?(CP*#CP?), we get

K1~ K1 = K2 ~— (K
0(1\/062202062\-/061
where a1 — a1 = ap — ay generates H4(CP2#CP2). The matrix corresponding to this structure is

the 2 x 2 identity matrix, which is positive definite. Meanwhile, via the Kiinneth Formula, letting
0 be a volume form in S?, we have 711 * (9) and 75 () the generators of H(S? x S?), and

71 (0) — 77(0) = 0
7} (0) — 73 (8) = (~1)*(73(8) — 7} (6)) = 73 (8) — 7} (6)
75 (0) — 75(6) = 0,
where 71} (0) — 715(0) generates H*(S? x $?). The matrix corresponding to this is the 2 x 2 non-

trivial permutation matrix, which is not positive definite as it has a positive and negative eigen-
value.

Thus, the two cup product structures are not the same and thus the two cohomology rings are not
isomorphic. "
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Spring 2021, 8 Consider a differentiable map f : S?"~! — S" withn > 2. Ifa € Q"(S") is a
differential form of degree n such that {5, & = 1, let f*a € O"(5*"~1) be its pull-back under f.

(a) Show that there exists B € O"~1(5%"~1) such that f*(a) = dp.

(b) Show that the integral I(f) = §s..—1 B A dp is independent of the choices of f and «.

(a) We wish to show that f*(a) is an exact form in Q"(5**~1). However, as & is an n-form, we
have that da = 0, so « is closed. This implies that f*(«) is closed as

df*(2) = f*(da) = £*(0) = 0.

Note that as n > 2, we have thatn < n+n—1 = 2n— 1. So, as H*(S*"~!) = 0 and f*(a) is
closed, we have that f*(«) is exact, thus there exists B € "~1(S2*~1) such that f*(a) = dB.

(b) We first show I(f) is independent of the choice of B. That is, suppose B, ' € Q"~1(52"~1)
such that df’ = f*(a) = dB. Then, d(f’' —B) = f*a — f*a = 0, so ' — B is closed. As
H"~1(§?"=1) = 0, this implies B’ — B is exact, so ' — B = dy for some y € Q"~2(5?"~1). Thus,

LZHI B Andp = LGl(ﬁ +dy) Ad(B+dy) = f

S2n

1,3/\dﬁ+L 71d'y/\d,8.

2n

We are done if we show the last integral vanishes. However, by Stoke’s

dy ndp = d(y A dp) = d2(y A dB) = 0.
Jouo o= [

Now suppose «,a’ € ()"(S") are such that {o, &« = 1 = (., &’. Then, as H"(S") = Z, we have
a = &' + dn for some 77 € Q"1(S"1). Let B, B’ € O"~1(S?*~1) be such that df = f*(«) and
dp’ = f*(a’). Then,

dp = f*(a) = f*(& +dy) = f*(&') +df*(n) = dp’ +dy’ = d(p'+7").

for some 1’ € Q"~1(S?"~1). Thus, B — B’ — 1’ is closed, implying B = B’ + 1’ + d7y for some
v e Q" 2(S?~1), Thus,

Js rdp—p ndp = L (B'+ 1 +dy) A (dp' +dn') — B~ dp
=J B ady +1' AdB +1' Ady +dy Adp +dy Ady’
§2n—1
:J d(,B//\’?,)‘FJ 77'/\d17'+f d(y ndB' +y ~dy).
§2n—1 §2n—1 g2n—1

Note that 4’ A dy’ = f*(n) Adf*(n) = f*(y ~ndy) = £*(0) = 0. Thus, as these integrals are
all of exact forms, they integrate to 0 via Stoke’s.

Spring 2021,9 Let f : M — N be a smooth map between smooth manifolds, X and Y be smooth
vector fields on M and N, respectively, and suppose that f. X = Y (ie., f.(X(x)) = Y(f(x)) for
all x € M). Then prove that

f*(Lyw) = Lx(f*w).

75



We first show f*iyw = ixf*w for any w e Qk(M) Let Eq, ..., Ex_1 be vector fields on M. Then,

Friy(En .., Ep 1) = iy (foEr -y fuEx1) = @(Y, fuEn, .-, faEi1)
= W(fuX, fuE1, .-, foEi1)
= F*w(X,Ey,..., Ex1)
=ixf*w(Ey,..., Ex_1).

Thus, as df* = f*d, we have, via Cartan’s magic formula

FH(Lyw) = F*((diy + iyd)w) = frdiyw + frivdw = dix f*w + ixdf*w
= (dix +ixd)(f*w) = Lx(f*w).

Spring 2021, 10 Prove Cartan’s lemma: Let M be a smooth manifold of dimension n. Fix 1 <
k < n. Let w' and ¢; be 1-forms on M. Suppose that the {w!,...,w*} are linearly independent

and that ¥ | ¢; A w' = 0. Prove that there exist smooth functions hij = hj; : M — R such that
foralli=1,...,k ¢; = 2]11 hijewl.

We first prove that {«y, ..., «,} is a linearly dependent set of 1-forms if and only if &y A --- A &, = 0.
The forward direction is clear, by linearity of wedge product and a; A &; = 0 as «; is a 1-form. Now
let a1, ..., be a linearly independent set of 1-forms. Let p € M be given and consider a dual
basis Xj,..., Xy toway, ..., ar. Then, ay A -+ Aa1(Xy,..., Xg) =1, implying ag A -+ - Ay # 0.

Fix some 1 < j < k. First note that by linearity of the wedge product, we obtain
. k . .
(WA "D A A Wb A (Z@Awl) = (WA ADT A AW A0 =0,
i=1
where @/ indicates omitting «w/. However, expanding this, we also obtain
(W' A A A A W) A pri/\wl =w1/\---/\cf)]/\---/\wk/\(pj/\w]
i=1
1 k
=tw A AW AP

Thus,

wl/\---/\a)k/\gbj:O.

This, however, implies that {wh,..., wk, <pj} is a linearly dependent set, thus
k .
q>]' = Z hl-]-w] .
j=1

Since each w' is smooth and ¢; is smooth, each h;; must be smooth as well. We now show h;j = hj;.

Note that, fixing 1 <i < j <k, we have
k . .

0= <2¢r/\wr> AWV A AT A A A AWK
r=1
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1 1 ~i

/\'“/\&\)lA"‘A@]A"-Awk-i-(l)jAw]Aw A A@ A AD A AW
1

=4)iAwi/\w k

= hjjw A W' A w /\---/\@1/\--~/\ch1/\-~~Awk+hﬁwlAw7AwlA--~A&31A-~~A&31A~~-/\wk

However this implies

hz-]-wl/\---/\wk:hﬁwlxx...wk.

As {w!, .. .,wk} is a linearly independent set, we have wl Ao AWk # 0, thus we must have

hij = hj;, as desired. n

15.3 Fall 2021

Fall 2021, 1 Let Vi(IR") denote the space of k-tuples of orthonormal vectors in IR”. Show that

Vk(R") is a manifold of dimension k (n - “Tl) Hint: Use a map F : M, x(R) — RF1/2 such
that V;(IR")) becomes the preimage of a regular value of F. (Here M, x(R) denotes the set of
matrices with n rows and k columns.

Consider the map F : M, «(R) — Sym(M(R)) given by A — ATA. We note that V;(R") =
F~1(I). Letting C € Sym(M(R)) and having B = 1 AC, we note that

—im L _ _gT Tg _ L(cTyT Lirac_ter 1ol
dF4(B) = lim © (F(A + tB) — F(A)) = BTA+ A B—2<CA>A+2A AC=-CT+5C=C,

as CT = C. Thus I is a regular value of F, implying F~!(I) is a manifold of dimension

dim(M; k) — dim(Sym(Mi(R))) = kn — k(k; Do (” - szrl> '

Fall 2021, 2 Show that the product of two spheres S” x S7 is parallelizable provided p or q
is odd. (Here parallelizable means the tangent bundle is trivializable; equivalently, there exist
(p +q) vector fields on S? x S7 which are everywhere linearly independent.)

WLOG suppose p is odd. Define the map X : S¥ — TSP with

X — <_x21 X1, —X4,X3, ..., _xp+1/ xp)'

We note that X is a vector field as, as in fact

x - X(x) = (x1,%2,X3, X4, -, Xp, Xp11) - (—X2, X1, —X4, X3, ., —Xp11,Xp)
= —X1X2 + X2X1 — X4X3 + X3Xg — -+ — XpXpy1 + Xpi1Xp =0,

Define the bundle B where By = span(X(x)). Then, B is a one-dimensional bundle and thus
B =~ S” x R. We also note that TS? = B@® BL. We also note that the normal bundle NS? is trivial
as S? has codimension one when embedded into RP*!. Additionally, we note, for x € S7,

TRE™ = TSP + NSE.
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The same is true for S7. Additionally, letting 711 : S x ST — SP and 7, : S x §7 — S9 be the
canonical projections, we have

T(SP x S7) = ¥ (TSP) @ 75 (TS7) = mi (B® B) @ 3 (TSY)

BH @ SP x R@ i (TST)

BH® 5 (TST@® ST x R)

BY)® 3 (TST@ NST)

BH) @ (87 x RTHY)

Bt @57 x R?)@SP x §1 x R~

TSP ®NSF) @ SP x §1 x R171

= 5P x ST x RPFI@SP x ST x RI™1 = S7 x §1 x RPHI,

~ o~ ~ —~ —~ —~

Thus SP x S7is parallelizable.

Fall 2021,3 Let M < R"\{0} be a compact smooth submanifold of dimension m. Show that M
is transverse to almost all k-dimensional linear subspaces in R". (Here “almost all” means that
the set of subspaces that are not transverse to M has measure zero.)

Let U = R" x - - - x R" denote the open set of linearly independent vectors in (R")¥. Consider the
[ —

k times

map F : (RF\{0}) x U — R" via

1 k i
(a,...,a%01,...,0) r—>21x U;.
i

Note that we may restrict F to R™\{0} as 3}, a'v; = 0 if and only if ' = 0 for all i as this set of
vectors are linearly independent. We claim that F is a submersion.

Note that given (al,..., ok v, ..., vy), there exists some i such that &’ # 0, thus for any h e R"

1
AFu ko, 00(0,...,0,0,...,h,...,0) = lim i(F(le' 8Ky, vi4 L)

—F(ocl,...,ak,vl,...,vk)) = o'h.

As F is a submersion, F is transverse to M < R"\{0}. Thus, by Thom’s transversality theorem, for
almost all v = (vy,...,v;) € U the map F, : RF\{0} — IR™\{0} is transverse to M. This implies that
the k-dimensional linear subspace spanned by the set v is transverse to M for almost all linearly
independent sets of k vectors. As this is true for almost all linearly independent sets of k vectors,
this is true for almost all k-dimensional linear subspaces, as there is a surjection P : U — Gr(k, n),
where Gr(k, n) denotes the space of k-dimensional linear subspaces of R". .

Fall 2021, 4 Let w € O}(IR") be a compactly supported n-form. Show that w = dr for some
compactly supported (1 — 1)-form 17 € Q7 ~1(R") if and only if {, w = 0.
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(—) Suppose w = dn. Then

J w = n=0
n a]Rn

as 17 has compact support and JR" = ¢, so we may apply Stokes theorem on compactly supported
form.

(<) Suppose SIR” w = 0. There are two cases.

Case 1: n = 1. Then w = fdx for some compactly supported f € C*(R). Define F : R — R as

F(x) = roo F(t) dt.

By the fundamental theorem of calculus, dF = F'dx = fdx = w. As f is compactly supported,
there exists some R > 0 such that supp f < [—R, R]. When x < —R, F(x) = 0 and when x > R, as
{rw = 0, we have

F(x) = J_xoo f(t)dt = j_iof(t) dt = 0.
Thus, supp F < [-R, R].

Case 2: n > 1. Let B, B’ € R" be open balls centered at the origin such that suppw < B < B < B'.
By Poincare’s Lemma , for every closed form w, there exists a smooth (n — 1)-form 7 on R" such
that dt = w. In particular, we note d7 = 0 on R" — B.

Consider the restriction of T to R” — B. Note that 7 is closed on this domain. Additionally note
that the inclusion ¢ : S — R" — B induces an isomorphism * : Hljz Y{R"-B) — Hix 1(s) as
R" — B deformation retracts onto S, some (1 — 1)-sphere contained in R” — B centered at the origin.
However, it then follows, since T is closed on R” — B, that 7 is exact on R" — B if and only if /*T is
exact on S, which in turn is true if and only if Ss *7 = 0. However, Stokes implies

OZJ w:sz dt = T.
" B B B

Ergo, there is a smooth (1 — 2)-form v on R” — B such that T = d-y. Letting ¢ be a smooth bump
function that is supported on R" — Band equal to 1 on R"” — B/, we have:

Thus, 7 is exact on R” — B.

* 7 =T —d(¢7) is smooth on all of R”,
o dy =dt —d*(¢y) = dt = w,
* 71 is compactly supported.

Fall 2021, 5 Let n > 0 be an integer. Let M be a compact, orientable, smooth manifold of
dimension 47 + 2. Show that dim H?"*!(M; R) is even.

See Spring 2015 #10. Idea: Use Poincaré Duality to define an alternating non-degenarate bilinear
form. .
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Fall 2021, 6 Let f : C — C be a nowhere zero continuous function. Prove that there exists a
continuous function g : C — C such that f(z) = e8 forall z € C.

As f is nowhere zero, we may restrict f to a map f : C — C\{0}. Noting that the map exp : C —
C\{0} is a covering map, and that f.(7;(C,*)) = f«(0) = 0 = exp,(0) = exp, (71 (C,*)) as C is
contractible, there exists a lift ¢ : C — C such that f = exp o g, as desired. .

Fall 2021, 7 In this problem, work in either the category of topological manifolds or smooth
manifolds (your choice). Let M be an n-manifold. Define its orientation double cover M, and
explain its structure as a topological /smooth manifold. Prove that the orientation double cover
of M is always disconnected.

We work in the category of smooth manifolds.
Define the orientation cover M as the set of orientations of all tangent spaces to M:

M = {(p,Op) | p € M and O, is the orientation of T,M}.

Define the projection 7w : M — M where (p, O,) — p. Since each tangent space has exactly two
orientations, the fiber of this map has cardinality 2.

For each pair (U, O), where U is an open subset of M and O is an orientation on U, define a subset
Up < M as follows:

Uo = {(p,Op) | p € U and O, is the orientation of T,M determined by O}.

We show that the collection of all subsets of the form Uy is a basis for a topology on M. Given
some (p, Op) € M, let U be an orientable neighborhood of p in M, and let O be some orientation
on it. We may assume Oy, is the same as the orientation of T, M determine by O by replacing O
with —QO if necessary. It follows that (p, Op) € Up, so the collection of these sets cover M.

If Up and U’ are two such sets and (p, Op) are in their intersection then O, is determined by
both O and O'. If V is the component of U n U’ containing p, then the restricted orientations O|y
and O’|y agree at p. Since these two orientations agree at a point, they agree on all of V. Thus,
Uo n U’ e contains the basis set Vp,. We thus have a topology.

To prove the orientation double cover of M is always disconnected, we first prove M is orientable.
Let j = (p, Op) be a point in M. By definition, O, is an orientation on T, M, so we can give T;M
the unique orientation O; so that dmr; : T;M — T,M is orientation-preserving. This defines a
pointwise orientation O on M. On each basis open subset Uy the orientation O agrees with the

pullback orientation induced from (U, O) by (the restriction of) 7z, so it is continuous.

As M is orientable, we note that M is evenly covered by 7, as every connected open orientable
subset is evenly covered by 7. This implies M has two components, and thus is disconnected. =

Fall 2021, 8 Let M be a connected non-orientable manifold whose fundamental group G is
simple (that is, has no non-trivial normal subgroup). Prove that G must be isomorphic to Z /2

Consider the orientation double cover M %> M. As M is non-orientable, M is connected, and as M
is a double cover, we have that p. (711 (M, *)) is an index 2 subgroup of 711(M, *) = G. As all index
2 subgroups are normal, this implies, as G is simple, p.(711(M, x)) = 0. However the only group
with a trivial index 2 subgroup is Z/2. "
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Fall 2021,9 Let X be the quotient of the space {0, 1,2} x Sl x D? by the relation
(0,2z1,22) ~ (1,21,22) ~ (2,21,22) V21,22 € st

(Here S! is the unit circle and D? is the unit disk, both inside IR?.) Compute the homology groups
of X with integer coefficients.

We construct a Mayer-Vietoris LES. Let A = {0,1,2} x S! x {x € D?| |x| > %}/ ~and B = {0,1,2} x
S! x {x € D?||x| < 3}/ ~. Then, A deformation retracts onto ({0,1,2} x S! x S/ ~) = S! x S!, B
deformation retracts onto {0,1,2} x S!,and A n B deformation retracts onto {0, 1,2} x S' x S'.

We note that H,(S') = Z o) @ Z ;) and, via Kiinneth, H,(S! x S') = Z, @Z%l) @ Z ). Thus,

H.(A) = Zo)®Z @ Z),
H.(B) = Z{p) ® Z}),
Hi(A N B) = Z{y @ ZY @ ZY,,.

So, we obtain the LES, in reduced homology

0 H(X) > Z2 27 o H(X) > 28 5 2207° - Hi(X) - 22 % 2078 — Hy(X) — 0.

Wessee f, : Hy(A n B) — Hy(A)@® Hy(B) is the map in which Fy, ,, F3, the generators of Hy(A n B)
each map to map to F, the generator of Hy(A), as the boundary relation identifies each copy of
S! x S, That is, fa(ay, a2, a3) = a1 +ap + az. Thus, H3(X) = ker f, = Z2. We also note f, is
surjective, implying we have an epi-mono splitting giving us the LES

05 H(X) > Z0 % 22078 - Hi(X) > 728 & 2078 — Hy(X) - 0.

We then see fy : Ho(A n B) — Hp(A) ® Ho(B) is the map in which Aj, A, A3, the generators
of Hy(A n B) each map to A, the generator of Ho(A) for the same reasoning as above, and to
B1, By, B respectively, the generators of Hy(B). That is, fo(a1, a2, a3) = (w1 + a2 + a3, &1, 02, 3).
Thus, Ho(X) = coker fop = Z. We additionally fj is injective so we have another epi-mono split-
ting, giving us the LES

0 Hy(X) - 20 % 220 7% - Hy(X) — 0.
Finally, analyzing our map, by similar logic as above, we have
fi(a1,a2,a3,b1,b2,b3) = (a1 + az + as, by + by + b3, a1, a2, a3).
Thus, Hy(X) = ker f, = Z? and H;(X) = coker f2 = Z. Putting this all together, we obtain

Z k=01,
Hi(X)=<{7Z% k=23,
0 otherwise.
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Fall 2021, 10 Consider the following subsets of R®

Z={(0,0,2)|ze R}
C1 = {(cos0,sin0,0) |6 € R}
Cy = {(2+ cos@,sinf,0) |6 € R}

Prove there is no self-homeomorphism on R? taking Z u Cy to Z U C,.

Let X; = Zu Cyand X; = Z u C. Xj is a line going “through" the unit circle and X, circle with a
line “tangent" to it’. We show that no self-homeomorphism exists.

Say there exists a self-homeomorphism f. Then, f maps R*\ X; to R*\ X,. This induces an isomor-
phism of fundamental groups.

However, R\ X; deformation retracts onto a torus, so 711 (IR*\X;) = Z?2, and R\ X, deformation
retracts onto S? v S!, and thus 711 (R3\ X5) = 711(S? v S!) = 711(S?) % 711(S') = Z. These groups are
clearly not isomorphic (they are free Z-modules of differing rank) thus we have a contradiction. =

15.4 Spring 2022

Spring 2022, 1 Let M be a closed (compact, without boundary) 2n-dimensional manifold, and
let w be a closed 2-form on M which is non-degenerate, i.e., for any p € M, the map oM — T; M,
X — ixw(p) is an isomorphism. Show that the de Rham cohomology groups H2k # 0 for
0<k<n.

It suffices to show H3% + 0, as [w"] = [wX] A [w" ] for any 0 < k < n. We will show H2} # 0, by
showing w is a closed form that is not exact. Consider the map T,M x T,M — R where

XxYw—wp)XY).
This is a bilinear form as w(p) is a multilinear map. However as it is alternating, we have
w(p)(X,Y) = —w(p)(Y, X).

Finally, we see w is non-degenerate because Y — w(p)(X,Y) is exactly the map ixw(p), which
is an isomorphism by hypothesis. That is, for any X € T,M, 3Y € T,M such that w(p)(X,Y) is
nonzero, which proves w(p) is non-degenerate.

So we have a non-degenerate bilinear skew-symmetric form. Thus, there exists a basis

X, Xn Y, e, Yo € T,M

such that
w(p)(Xi,Y;) = dij,
and
w(p)(Xi, Xj) = w(p)(Yi, Y;) = 0.
Thus, ;
w(p) = D XEAYS,
i=1
5 Any TikZ enjoyers here?

82



implying
W' (p) = nIXF A AXEAYE A A Y
Thus,
wn(p)(le- --/Xn,Y],. . .,Yn) = n!

implying w" is nowhere vanishing as Xy, ..., X, Y1,...,Y, is a basis for T, M, implying M is ori-
entable. As w" is nowhere vanishing, S v w" #0,and as M is closed, this implies w" is not exact,
as desired. .

Spring 2022, 2 Let M be a closed n-dimensional manifold. Let w be a closed k-form on
M,1 < k < n. Prove that for any p € M there is another closed k-form T which vanishes on
a neighborhood of p and such that [w] = [t] € HE,(M).

Let w € OF(M) be given such that w is closed. Let p € M be given. Find B = M such that B is
diffeomorphic to an open ball in R”, and some U < U < B. Let ¢ be a bump function supported
on Bsothat¢ =1on U.

Consider i : B — M. We note that i*(w) is still closed as di* (w) = i*(dw) = i*(0) = 0. Thus, as
H¥(B) = H*(R") = 0, we have that i* (w) is exact. Therefore, let 7 € OF(B) be such that dy = i*(w).
Then consider

T=w—d(¢n).
Since¢p =1onU, T = w—d(¢n) = w —dy = 0, and, by construction, [w] = [T]. "

Spring 2022, 3 Let M be a closed n-dimensional manifold and let () be a volume form (i.e., a
nonvanishing n-form) on M. Given a vector field X on M, its divergence div(X) is the smooth
function on M defined by the identity:

Lx(Q)) = div(X)Q)
where Lx denotes the Lie derivative with respect to X.

(a) (5 pts) Prove that {,, div(X)Q) = 0.
(b) (5 pts) Express div(X) in local coordinates.

(a) Using Cartan’s Magic formula, and noting that Q) = 0 as () is a top form and M = J as
M is closed, we obtain

fM div(X)Q = fM Lx(Q)

fM dix(Q) + JM ixdQ)

LM ix(Q) = 0.

(b) For p € M, consider the chart (U, x), where p € U. Thus, locally we have () = fdx' Ao A
dx" for some f # 0,and X = Y/, Xl%. Thus, via Cartan’s magic formula and as () is a top
form, we locally have

div(X)Q = Lx(Q) = dix(Q) = dix(fdx' A - A dx™).
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We first notice that, as f is a 0-form,
ix(fdx' A ndx™) = fix(dx' Ao ndx™) +ixf A (dxt Ao AdX") = fix(dx Ao A dxT).

However,

ix(dx' Ao ndx™) =Y (=D)idx (X) Adxt A A dxi Ao A da”

-

Il
—_

(_1)iXidxl A A d/_;l A A dxn.

I
.MS

I
—_

We then have
dix(fdx' A--- ~ndx") = d(fix(dx' A ---Adx™)) = df nix(dxt A Adx™) + fdix(dxt A--- A dx™).

Calculating, we find

df nix(dx' A+ adx™) = Z(—l)igxfiXidxi ndxt A ndxi A A dX"

n
= Z ﬁXidx1 Ao Adx,

lzlaxl
and
n . . —
ix(dx' Ao Adx™) = — XPA o AdXE A A dX"
dix (dx! dx" d 1)' Xidx? d d
i=1
n ' i ) —~
= 1) —dxdx A ANdxt* A ANdx
112deld1 d dx"
i=1 *
Xi
:;fgxidxlx\ A dx"
Thus,
. : 1 n 6f 17,1 n . aXi 1 n
div(X)Q = dix(fdx' A - A dx FZ@X“ Ao Adx +Zfaxl.dx AceeAdx
i=1 i=1
af i axi 1 n
—;{WX +faxl:|dx AN /\dx
:Z[}Z{Z t aaxl]fdxlxx Adx",

implying




Spring 2022, 4 Let w be a smooth 1-form on a manifold M and let X and Y be smooth vector
fields on M. Use the Cartan formula for Lie derivatives to derive the following formula:

dw(X,Y) = Xw(Y) = Yw(X) — w([X,Y]).

Cartan’s magic formula states, for X a vector field,
Lx =dix +ixd.
Thus, we have
(Lxw)(Y) =dixw(Y) + ixdw(Y) = d(w(X))(Y) +dw(X,Y) = Y(w(X)) +dw(X,Y),

as w(X) : M — R is a linear functional. However, we also note that, via the product rule in which
Lx satisfies,
(Lxw)(Y) = Lx(w(Y)) = w(Lx(Y)) = X(w(Y)) - w([X,Y]),

as, again, w(Y) : M — R is a linear functional. Combining these equations implies our result. =

Spring 2022, 5 Let N < R” — {0} be a compact submanifold of dimension m. Show that N is
transverse to almost all k-dimensional linear subspaces in IR”. Here "almost all" means the set of
subspaces that are not transverse to N has measure zero.

Let U c R" x --- x R" denote the open set of linearly independent vectors in (R")*. Consider the
—_———

k times

map F : (RF\{0}) x U — R" via

1 k i
(', ...,a%01,...,0) »—»sz v;.
i

Note that we may restrict F to R"\{0} as >}, a'v; = 0 if and only if a’ = 0 for all i as this set of
vectors are linearly independent. We claim that F is a submersion.

Note that given (le, ook, v ), there exists some i such that al # 0, thus for any h e R"

1

1
0,...,0,0,...,h,...,0) = im = (F(a',..., a5 01,...,h+t,...,00)
1

dF(
t—0 t

al,...ak0p,.,00)

— F(a ,...,uck,vl,...,vk)) = o'h.

As F is a submersion, F is transverse to M < R"\{0}. Thus, by Thom'’s transversality theorem, for
almost all v = (vy,...,v;) € U the map F, : RF\{0} — R™\{0} is transverse to M. This implies that
the k-dimensional linear subspace spanned by the set v is transverse to M for almost all linearly
independent sets of k vectors. As this is true for almost all linearly independent sets of k vectors,
this is true for almost all k-dimensional linear subspaces, as there is a surjection P : U — Gr(k, n),
where Gr(k,n) denotes the space of k-dimensional linear subspaces of R". n

Spring 2022, 6 Describe all the connected covering spaces of RIP? v RIP?. Here v is the wedge
sum.
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See here for another write-up.

First note that any connected (locally path-connected, semi-locally simply connected) space X
admits a simply connected double cover X, then its only connected covering spaces are X and X
we can see this because X is the universal cover of X, and since it is a double cover, (proposition
1.39 of Hatcher) 7r1(X) must have order 2 (so must be Z/2Z) so its only subgroups are the trivial
group (corresponding to the universal cover) and the whole group (corresponding to the trivial
cover X — X).

Therefore, the covering spaces for RP? are RP? and S%. In particular, in the covering of X =
RP? v RP?, when we have a S?, since it’s a double cover, there are two connecting points that
can be wedge summed with coverings of the other, while RP? has only one of these connecting
points. Thus, the covering spaces that we have are as follows: we can have a chain that begins
and ends with RP¥ (since we need to ensure that we our covering degree is the same), with $%’s
in the middle, we can have an even number “bracelet” of 52, we can have an infinite chain that
starts with IRP? that infinitely chains $%’s, and we can also have an infinite chain of $%’s. .

Spring 2022, 7 Let X be a CW complex consisting of one vertex p,2 edges a and b, and two
2-cells f1 and f,, where the boundaries of a and b map to p, the boundary of f; is mapped to the
loop ab? (that is first 2 and then b ), and the boundary of f, is mapped to ba®.

(a) Compute the fundamental group 7;(X) of X. Is it a finite group?

(b) (5 pts) Compute the homology groups of X with integer coefficients.

(a) The presentation of the fundamental group is given b
p group 1s g y
m(X) = {a,b|ab’, ba®)
The relationship ab® = 1 implies that a = b~ so that ba®> = 1 implies b(b=2)% = 1 implying
b® = 1. Similarly by symmetry, a® = 1. Noting that 2 = b=3 = b>, we may reduce any word

akl bki o Elk" bk;‘ _ b5k1 bk’l o bSk" bkﬁ1 _ b5k1 +kj+--45kn+ky, _ b

where r = 5k; + k} + - - - + 5k, + kj, mod 8. Thus
m(X) = Z/8Z,

which is clearly a finite group.

(b) We know that H,(X) = 0 for n > 3 since there are no 3 simplices and up. Consider the
sequence of complexes

0 0 0 0

we note that 01(a) = 01(b) = p—p = 0and d2(f1) = a+ 3b and 02(f2) = 3a + b. We then
analyze ker(dy). Let d2(af1 + Bf2) = 0. Then,

0=wa(a+3b)+B(Ba+b) =ala+3B)+b(3ux+ p).
However, solving this system of equations gives us @ = B = 0, thus 0, is injective. Therefore,

_ ker(do) Z
HX) =y "0~ %
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Hi(X) = (m1(X))ab = Z/82Z,
_ ker(0s)

= i)

0
—==0.
0

For all k < 0 and k > 2, we have ¢ = 0 implying H(X) = 0.

Spring 2022, 8 Let X be a topological space and let Y = (X x [0,1])/ ~, where (x,0) ~ (x/,0)
and (x,1) ~ (x/,1) for all x, x" € X. Compute the homology groups of Y in terms of those of X.

Y = S(X), the suspension of X. Follow the argument as in 10.1 to get H,(Y) = H,_1(X) foralln. m

Spring 2022, 9 Let M be a compact odd-dimensional manifold with nonempty boundary oM.
Show that the Euler characteristics of M and 0M are related by x(M) = %(GM).

See the proof of Theorem 4.2. .

Spring 2022,10 Let A € GL(n +1,C). It induces a smooth map
¢pa:CP" - CP", [(zo,...,20)] — [A(20,...,21)],

where [(zo, .. .,zy)] is the usual equivalence class of (zo,...,z,) in (C"™ —{0}) /(zo,...,2z4) ~
(Azg,...,Azy), where A € C*. (You do not have to check the smoothness of ¢4.)

(a) (3 pts) Show that the fixed points of ¢4 correspond to eigenvectors of A (up to multiplication
by C*).

(b) (3 pts) Show that ¢ 4 is a Lefschetz map if the eigenvalues of A all have multiplicity 1.

(c) (4 pts) Compute the Euler characteristic of CIP" by calculating the Lefschetz number of some

Pa-

(a) Suppose that ¢4(x) = x. Then [Ax] = [x] or in other words, Ax = Ax, for some A € C.
However, this is precisely what it means for x to be an eigenvector of A.

Conversely, if Ax = Ax then [¢pa(x)] = [Ax] = [Ax] = [x] so that x is a fixed point of ¢4

(b) A Lefschetz map is one such that the graph(f) := {x, f(x) : x € X} is transversal to A =
{(x,x) : x € X}. This simply requires that (d¢ 4 ) to have no fixed points for x an eigenvector.
Let Ay, ..., A, be our eigenvalues and vy, . .., v, our eigenbasis. Note A; # 0 for all i as A is
invertible. Then, in local coordinates, where z; # 0, we have

20 N Zn /\0 20 N /\n Zn
d e, Ly, — = — e, Ziyene,—— | .
( (PA)X Zl/ 4 17 4 Zl Al le 4 174 7 )\_l Zl

Noting that all of our eigenvalues are distinct, we have that (d¢ ), has no fixed points and
thus is a Lefschetz map.

From part (a) we know that graph(f) and A intersect at the eigenvectors of A. At the point
x € graph(f) n A the transversality condition states

graph(dfy) + Ay = To(CP") x Ty (CP")
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(c) We have x(CP") = L(id) = L(¢r) where I is the identity matrix. Note additionally that
Lefschetz numbers are invariant under homotopy. As GL(n + 1,C) is connected, we note
that ¢; is homotopic to ¢4 for any matrix A. Choosing A = diag(1,2,...,n + 1), we may in
fact compute L(¢,4) as, from part (b), we know ¢4 is a Lefschetz map. However,

L(¢a) = Z sign(det((dp —id)y).

x eigenvectors

However using our analysis from part (b), we have

d(¢p4 —id), = diag (1—1,?—1,...,5,...,“.1 —1>~

i i
As this is a complex matrix, its determinant will be positive, thus

Liga)= >, l=n+1l

X eigenvectors

15.5 Fall 2022

Fall 2022,1 The Grassmannian Gr(k, n) is the set of all k-dimensional subspaces of R". Explicitly
construct the structure of a smooth manifold on Gr(k, n) using atlases. What is its dimension?

There is a solution in Lee (Example 1.36) and Peterson’s notes (Section 1.2) (and Wikipedia). ]

Fall 2022, 2 The orthogonal group O(n) is the set of n x n matrices M satisfying MTM = Id.
Construct the structure of a smooth manifold on O(n) by viewing it as the preimage of a regular

value of a smooth map R" — R"("*+1)/2_ Prove that its tangent bundle is trivializable.

Let F : My(R) — Sym(M,,(R)) where M > M M. We note this map is well defined as (MT M)T =
MT(MT)T = MTM, so F(M) is always symmetric. Additionally note that O(n) = F~1(I). We show
I is a regular value.

Let A € F}(I) and C € Sym(M,(R)) be given. Note that A is invertible with AT = A=l Let
B = 1AC. Then,

dF4(B) = yn&% (F(A+tB)—F(A)) = ATB+BTA

- AT%AC + % (AC)TA = %ATAC + %ATACT =C,

as C = CT since C is symmetric.

To show its tangent bundle is trivializable, we may instead simply prove all Lie groups are paral-
lelizable. See Theorem 13.1. "

Fall 2022, 3 Let M be a closed oriented smooth n-manifold. Prove that for every k € Z, there
exists a smooth map f : M — 5" of degree k.
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Throughout this problem, we use the algebraic topology definition of degree, in which f : H,(M) —
H,(S") is multiplication by d = deg(f). We first find maps S" — S" with degree k for any k via
suspensions. See Subsection 12.1.1 for a more detailed explanation®.

We first find a degree k map S — S!. However, using the above definition, we note that maps
fr : St — S! where z — z* has degree k.

We then prove deg(Sf) = deg(f), for any map f : X — Y. Through the standard Mayer-Vietoris
argument for suspensions (see 10.1), and naturality of the exact sequence, we obtain the commu-
tative diagram

A (S(X)) — Hy(X)

Jsss 2

Hun(S(Y)) — H(Y)

Thus, suspensions preserve degrees. As 5"~1(S!) = S", taking suspensions of z — z¥ gives us
maps fi : S" — S" of degree k.

We now find a degree 1 map M — S". This idea is taken from this MSE post. Let B € M be an
open set homeomorphic to an open ball in R". Let g : M — M/(M — B) be the quotient map. Note
that M/(M — B) = S". By naturality of the exact sequence, we have the commutative diagram:

~ ~

Hy(M H,(M, M — B)

B s

Hy(M/(M ~ B)) —— Hu(M/(M ~ B), (M~ B)/(M ~ B))

The top map is an isomorphism as M is orientable. The bottom map is an isomorphism as
(M — B)/(M — B) is a single point and thus has trivial reduced homology. The right map is an
isomorphism by excision (see Hatcher Proposition 2.22). Thus g, is an isomorphism and thus ¢
has degree 1 as desired.

Let f = fyoq. Then deg(f) = deg(fx) deg(q) = k. To obtain a smooth map, as degree is invariant
under homotopy, we use the Whitney Approximation theorem to homotope f to a smooth map
with the same degree. n

Fall 2022, 4 Let M be a smooth manifold and let w € Q'(M) be a nowhere vanishing smooth
1-form. Prove that the following are equivalent.

(a) ker(w) is integrable.

(b) wAdw=0.

(c) There exists some & € Q' (M) such that dw = & A w.

We show (a) = (¢) = (b) = (a).

(@ = (c). Let ker(w) be integrable. Then, for every p € M, there exists some chart (U, x)

such that, without loss of generality, ker(w) = span (a—il, s, Wal_l), where m = dim M. Thus,

wl|y = fudx™ where f;; is a nowhere vanishing function. Thus, dw|y = dfy A dx™. Letting

6This subsection also includes a way of doing this more directly.
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aly = ‘if—u” (which is possible as f{; is nowhere vanishing), we note that

dw|y =dfy A dx™ = 4fu A fudx™ = (a0 A w)|y.

fu
Considering {¢y} a partition of unity subordinate to {U}, we define
o= Z Puau,
u

and thus, at every point p,

AW = (quuocu) AW =Z<Pu(06u/\w) =Z(pudw = dw.
u u u

() = (b). Letting dw = a A w, we have
wrdw=wAr(@rw)=—(wArw)ra=0

asw A w = 0sincew Aw=—wAwaswe QY(M).

(b) = (a). Suppose w A dw = 0. We show that ker(w) is involutive, which is equivalent to
integrable by Frobenius’s theorem. Let X,Y € ker(w) be given. We wish to show that [X,Y] €
ker(w). Note however that we have

dw(X,Y) = X(w(Y)) = Y(w(X)) - w([X, Y]) = —w([X,Y]).
If we can show dw(X,Y) = 0, then w([X, Y]) = 0 and thus [X, Y] € ker(w).

Letting Z € X(M) such that Z ¢ ker(w), there exists some p € M such that w,(Z) # 0. Thus,

0=wnrdwy(X,Y,Z) = wp(X)dwy(Y, Z) + wp(Y)dwy(X, Z) + wp(Z)dwy(X,Y)
= wp(Z)dw,(X,Y).

Thus, dw,(X,Y) = 0. However as we can find such a Z for every p € M, we note that dw (X, Y) = 0.
n

Fall 2022, 5 Let M be a 2n-dimensional manifold. A symplectic form on M is a smooth closed
2-form in O?(M) so that w A ... A w € QO?*(M) is a volume form. (That is, nowhere vanishing)
Determine all pairs of positive integers (k, £) so that S¥ x S¢ has a symplectic form.

We show the only pairsarek = ¢ =1and k = £ = 2.

Note that if S¥ x S’ is a symplectic form, as S¥ x S’ is closed, we require w” to not be exact. As
[w"] = [wH] A [w" 7], this implies we require all even De Rham cohomologies to be nontrivial. We
also need k + ¢ to be even.

Suppose k > 2 and ¢ > 2. Then, by Kiinneth’s formula,

H2(SF x 8') = (Hz(Sk) @Ho(sf)) @ (Hl(sk) @Hl(sf)) @ (HZ(S") ®HO(S‘5)>
=0®Z)e (00 (0®2Z)
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=0
So, we do not have any symplectic manifolds in this case.
Suppose k = 2 and ¢ > 4. Then, by Kiinneth’s formula,
H*(S% x §°) = H?(S?) @ H*(S") @ H'(8*) @ H3(S") @ H°(5?) ® H*(SY)
=ZR000®00Z®0=0
So, we do not have any symplectic manifolds in this case.
The possible candidates are S? x §?,S! x S!, and 5% x S*.

S! x S! is symplectic as it is an orientable two dimensional manifold, as the product of orientable
manifolds is orientable, so any volume form is our symplectic form.

We show S? x S? is symplectic. Let 77 be a volume form on S?, which exists as S? is orientable, and
let 71; : S? x S — S? be projection onto the ith coordinate. We have, via Kiinneth, 7i5 A 757 is a
volume form on $? x $%. Take w = 7t}n + 757. Note that 7w¥y A iy = wf(y Ay) =0asyy Anisa
4-form on S2. Thus,

w AW =271 AT,

which is a volume form, as desired.

S? x §% is not symplectic. Suppose it were. Note that, via Kiinneth,
H%(S? x §*) = H*(S>) @ HY(S*) ~ Z.

Thus, it is spanned by 71§17 where 7 is a volume form on S%. Suppose w were a symplectic form on
S? x S*. Then, [w] = c[n}n]. Thus, [w?®] = 3[nf4®] = 0. However this contradicts the fact the w?
is a volume form, as it cannot be exact. n
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Fall 2022, 6 Let C, be a chain complex of free abelian groups. Let A, = C,.® Z/p and let
B. = C+ ® Z/p? be the chain complexes we get by tensoring C. degreewise with Z/p and Z/p?,
respectively.

(a) Show that we have a short exact sequence of chain complexes

induced by the corresponding sequences of abelian groups
0—Z/p—Z/p* - Z/p — 0.
(b) Show how to define a Bockstein natural transformation

,B : Hy (A*) — Hj_4 (A*)

such that we have an associated long exact sequence

- — Hy (As) — Hy (B.) — Hy (As) B Hi 1 (A) — ..
(c) Show that if x and y are elements such that d(x) = py, then
Bx) =7,
where the bars indicate the reduction modulo p of the corresponding classes.

(d) Show conversely that given an element ¥ € Hy (A,), if B(¥) = 0, then we can find elements
x, 1 € C, such that x reduces to ¥ modulo p and d(x) = p?y modulo p>.

(a) As C, is a chain of free abelian groups, C. ® —, degree-wise, is an exact functor. Thus, as
0—Z/p—Z/p*—Z/p—0
is a short exact sequence, so is

(b) This is the snake lemma. Consider the following chain complexes

We desire to construct a map B : Hy(Ax) — Hx_1(Ax). Let ¢ € (Ax) be such that dc = 0. By
exactness of columns, we know there exists b € (B, )i such that g(b) = c. By commutativity
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of the bottom square, we know that g'(db) = dg(b) = dc = 0, the db € ker ¢’. By exactness of
columns again, we know there exists a € (A, ),_1 such that f'(a) = 0b. Note that such an a is
unique as f’ is injective. We define (c) = a, and we show this is well defined.

Let b, b’ be such that g(b) = ¢ = g(V'). Note that g(b — V') = g(b) —g(b') =c—c =0, thus b —
b’ € ker g. So exactness gives us some w € (A )i such that f(w) = b —b'. Arguing as above,
there exists some a,a’ € (A, ),_1 such that f'(a) = db and f'(a’) = 0b'. By commutativity of
the square, we have f'(0w) = d(f(w)) = d(b—b") = b —0b' = f'(a) — f'(a’) = f'(a—a’). As
f"is injective, we have 0w = a —a’. Then, a —a’ € im (0), and thus our map S is well-defined.

(c) We follow the construction as in part (b). Let x € (Cy)r and y € (Cy)x—1 with d(x) = y.
Consider X € (A,)x. We note that 0x = py = 0. Then note that X € (B.), has the property that
f(x) = %, where X denotes reduction modulo p? and ¥ denotes reduction modulo p. Then,
we have d(X) = py. We finally note that 7 has the property that f'() = py. Thus B(X) = ¥,
as desired.

(d) This is equivalent to showing d(x) = 0 modulo p?. Suppose B(X) = 0. Let X € (B )i be such
that f(X) = X, and let i/ be such that dx = ij. As f/(0) = §, we must have that y = 0 as f’ is
injective. That is, 0x = 0. However this is exactly what we want to show.

Fall 2022,7 Let H be a union of # lines through the origin in R®. Compute 717 (R®> — H).

We first notice that R* — H deformation retracts onto S*> — P where P is a collection of 21 points.
However, this is homotopy equivalent to R? — P’ where P’ is a collection of 21 — 1 points. We
prove that 711 (R?> — P;) = *,Z, the free product of k copies of Z, where Py is a collection of k
distinct points in IR? via induction and Van Kampen’.

This is clearly the case when k = 0 as IR? is simply connected so 711 (R?) = 0. Similarly, when k = 1,
we note that R?> — P; deformation retracts to S, so 711 (R> — P;) = Z.

Let P = {y1,...,yx}, where y] <y} <--- <y}, where y! is the first coordinate of y;. WLOG, as
these points are all distinct, there exists some 7 such that y} < y; ,, as if they are all equal, it must
be true for the second coordinate. Let € = y} R y!. Then, considering the two open subsets of
R?, Hy = {(x,y) e R?|x <y} + ¥} and H, = {(x,y) € R?|x > y} + &}, we have that y} € H; and
y} .1 € Hobut P n (Hy n Ha) = &. Thus, by Van Kampen, as H; n H is simply connected,

1 (R? = P;) = m1(R* = Py) # m1(R* = Py) = ,Z * 7 = 4/ Z,

as a + b = k and we obtained 711 (R? — P,) = *,Z and 711 (R? — P,) = %,Z by induction as a,b < k.

Fall 2022, 8 Let X be a path connected, locally path connected, semilocally path connected space.
Recall that a path connected covering space X — X is abelian if 771 (X is normal in 771 (X) and the
quotient is abelian. Show that there is an universal abelian cover: this is an abelian cover X — X
such that for any other abelian cover Y — X, there is a covering map X — Y factoring the map
X - X.

7You can also try simply stating that R? — P’ deformation retracts to a wedge sum of 2n — 1 SV, but I figure it is
nice to add a formal argument which may be useful in other scenarios as well.
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As X is a path connected, locally path connected, semilocally path connected space, it admits a
universal cover U — X. Let 711(X) = G. Then, by the Galois correspondence of covering spaces,

there exists a covering space X 2, X such that p«(m1(X,*)) = [G, G], the commutator subgroup of
G. By definition, we have that [G, G] <t G and G/[G, G] is abelian. Thus X is an abelian cover — we
now show it is universal.

Indeed, we note that for any N <t G, G/N is abelian if and only if [G, G] = N. Thus, noting that if
Y & X is an abelian cover, then g«(m1(Y, %)) = N, and we have

ps(mi(X,+)) = [G,G] = N = gu (1 (Y, %)).

Thus, by the lifting property of covering maps, there exists some p : X — Y such that p = g o f.

It remains to show that f is a covering map. To see this, let y € Y be given. We can choose a
neighborhood U = X of g(y) = x such that g~}(U) > y is a disjoint union of open sets that are
mapped homeomorphically to U. Then p~1(4~1(U)) = p~}(U) which is a disjoint union of open
sets that are mapped homeomorphically by g to U. Equivalently, it is a disjoint union of open
sets that are mapped homeomorphically by f to g~!(U). Thus p is a covering map onto Y. .

Fall 2022,9 The space S! x S! is the mapping cone of the map
[a,b] : ST — St v St

representing the commutator of the inclusion of the left summand a : S! — S' v S! and the
inclusion of the right summand b : S' — S! v S!. Use this and the long exact sequence to
compute the homology.

We have that, by above,
Slx sl = (51 <[0,1]] [(5" v sl) /~,

where (x,1) ~ [a,b](x) for all x € S' and (x,0) ~ (x/,0) for all x, x’ € S'. Via the argument in 10.3,
we obtain the LES

o H(sY e STy SY) S Bt x SY) S

That is, plugging in the homologies of H,(S!) and H,(S! v S), we get

0 — Fp(S" x §1) — z 122,

7> — Hy(S' x ') - 0.

We first note that, on first homology, [a,b].(x) = x + x —x —x = 0, where x is the generator of
Hi(S'). This implies that Z =~ Hy(S! x S!) and Z? ~ H;(S! x S!). We finally note that Hy(S! x S?)
as this space is path connected, via the definition of the mapping cone and S! and S! v S! are both
path connected. .

Fall 2022, 10 Let f : X — Y be a continuous, pointed map. Let X"(f) : ¥"X — X"Y be the
nth (pointed) suspension of f. Show that if for some 1, X" (f) induces the trivial map on reduced
homology, then it does for all 7.
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We prove that £"~1(f) and £"*1(f) induces the trivial map on reduced homology. Once this is
proven, we may iterate 1 < k < n many times to obtain "% ( f) induces the trivial map on reduced
homology and for any k, we obtain £"+¥( f) induces the trivial map on reduced homology. WLOG
we may assume 7 > 0 as if not, we need only prove that &"*1(f), is trivial.

We first begin with a similar argument as in 10.1 to get, for any integer m > 0, ﬁkﬂ (S"X) =~
H;(S™~1X) for all k. This also gives us the commutative diagram, for all k,

i1 (S"(X)) —— Hi(S"" (X))
|5 |51
Hi1(S™(X)) —— He(S™ (X))

Then, again for any integer m > 0, considering >"X = S"X/({p} x [0,1]), we note we have the
LES, as (S"X, {p} x [0,1]) is a good pair,

> Bi({p} % [0,1]) — B(S"X) — F(Z"X) — ...
As {p} x [0, 1] is contractible, this implies
Hip1 (E"X) = Hipq (S"X) = Hy(S"'X),
for all k. This, again, gives rise to the commutative diagram, for all k,
Hi(S"(X)) —— Hy(Z"(X))
|z |5
Hi(S"(X)) —— Hi(Z"(X))

As X"(f), is trivial, so is S"(f)s, and thus so is S"~!(f), and S"*!(f),, implying the same for

15.6 Spring 2023

Spring 2023, #1
Let M, N be smooth manifolds and F : M — N a smooth proper map.
(a) Show that F maps closed sets to closed sets.
(b) Show that the set of regular values is open.
(c) Let C = N be compact. Show that for every open set U = M containing F~!(C) there is an
open set V < N containing C, such that F~}(V) c U.

(a) Since F is proper, the inverse image of a compact set V < N is compact in M. Suppose A is

closed, we desire to show
F(A) c F(A).

Take a sequence {y,}/_; € F(A) such that y, — y. Since y, belong in F(A), it follows there
exists a sequence x, such that F(x,) = y,. Consider the compact set K = {y} |
{yn};_,. By sequential compactness, we know that there exists a subsequence {x;, } such that
xn, — x. However, f(x,, ) — y so by uniqueness of limits y = f(x). Therefore y € F(A) so
F(A) is closed.

95



(b)

(©)

Let A ¢ M be the set of regular points of f. Let x € A and ¢, i are coordinate charts around
x and f(x). Since x is a regular point, d(y o f o ¢~ 1) is surjective at ¢(x) (meaning there is a
n x n minor with non-zero determinant). However, det is a continuous map, so d(y o f o~ 1)
is also surjective at every point of some neighborhood of x. Therefore, this neighborhood is
a subset of A, which means that A is open.

Now, let B = N be the set of regular values. Then y € B iff f~1(y) = A, which is the
same as to say that f(x) # A for every x € AC. In turn, this is equivalent to y ¢ f(A°), so
B = (f(A%))C. But since A is open, AC is closed, so f(A®) is also closed, which means that
B = (f(A%))C is open.

Notice that in order for F~(V) to be contained in U, it needs to not intersect U, for which
V needs to not intersect f(U°). So just take

V= (f(U)".

First, notice that since U is open and f is a closed map, V' is open. So it is enough to show
the two inclusions:

* Show that V > C by supposing the contrary. Then V¢ n C # @, so there exists y €
VEAC = f(U®) nC. Since y € f(UC), there should be x € U s.t. y = f(x). On the
other hand, y € C,so x € f~!(C) < U. Contradiction!

* Now, show that F~1(V) = U by supposing the contrary again. If this is not true, then
F~1(V) n U® # &, so there should exist x € F~1(V) n UC. Since x € F71(V), f(x) e V =
(f(U%))C. On the other hand, x € U, so f(x) € f(U®) = VC. Contradiction!

Thus the constructed V satisfies all the conditions.

Spring 2023, #2 Consider a smooth map F : CP" — CP".
(a) When n is even show that F has a fixed point.
(b) When 7 is odd give an example where F does not have a fixed point.

(a)

If we can show L(F) # 0, we note that F has a fixed point by the Lefschetz fixed number
theorem. Recall that the cohomology ring

Z\u
H*(CP*;7Z) = (qu, || = 2.

Let F*(«) = ma, where m € Z Then, by the cup product structure, we note that
F* (o)) = miad.
Thus,
k ) ‘ ' 2k
L(F) = > (~1)/Tr(F* : H/(CP%Q) — H/(CP%;Q)) = > m.
j=0 j=0

If m = 1, then clearly L(F) # 0. Otherwise,
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(b) Consider F : C"*1\{0} — C"*1\{0}

(ZOr Z1y o1 Zny Zn+1) = (_Z/ _%/ veor 7241y Z)

Note that B
F(Az) = AF(z).

Thus, considering 7t : C"~1\{0} — CP", we have that 77 o F factors through 77, and thus we
get a well-defined map F : CP" — CP" where

[ZO/ Z1y 1 Zny Zn+1] = [_Z/ %/ cer T Zp+1, Z]

However, if this is the case, then zp; = —AZy;; 7 = —AAzo; = —|APPzy and zpi_1 = AZy; =
—AAzpi_1 = —|A[*25i_1 which implies that A = 0 or z = 0, which is impossible.

Spring 2023, #3 Let
xdy A dz+ydz Andx + zdx A dy

(x2 4 2 + 22)?

w =

o

e a 2 -form defined on IR® — {0} and S? = IR3 the unit sphere.
(a) Compute {s, i*w, wherei : S — IR? is the inclusion.
(b) Compute g, j*w, where j : 5> — R? is defined by j(x,y,z) = (2x,3y, 5z).

(a) As we are on S?, we note that x? + y? + z? = 1 for all (x,y,z) € S%. Thus, i*w = xdy A dz +
ydz A dx 4 zdx A dy. Thus, we have

f i*wzf xdy A dz +ydz A dx + zdx A dy
s2 s2

= | d(xdy ndz+ydz A dx+ zdx A dy), (by Stokes theorem)
D3

:J 3dx A dy A dz = 4.
D3

(b) We note that j(S?) is an ellipse that contains S2. Let E be the region of this ellipse with S?
removed. We first show that dw is in fact closed. However, w = fa where

w=xdy ndz+ydz adx+zdx ndy and [ = (¥ + 12 +22) 72
Then, dw = d(fa) = df A a + fda. Notice that do = 3dV and
df = —(x® + y? + 22) "2 (3xdx + 3ydy + 3zdz).

Thus,
dw=df na+ fdu = -3fdV +3fdV = 0.

Considering the inclusion k : E — RR®\{0}, we have

0= Lk*(dw) = L dk* (w) = LEw = LZ jfw— LZ i*w.
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Therefore,

J Jfw = J i*w = 4m.
s s2

Spring 2023, #4 Let M be a connected compact manifold with non-empty boundary ¢M. Show
that M does not retract onto M.

Fall 2013 #2. If such a retraction exists, then we can use the following LES in relative homology,
where (M, 0M) is a good pair (by assumption):

0 — Hy(@M) — Hy(M) — Hy(M/0M) 5 Hy_1(2M) % Hy_y (M) — -

We note that H,(0M;Z/2) = 0 as M is (n — 1)-dimensional, and
H,(M;Z/2) = H*(M,0M;Z/2) = H*(M/0M;Z/2) = 0

by Lefschetz duality.

As a retraction r : M — 0M exists, we have that id, = (ior), = r, oi,, thus i, is injective.
However, Lefschetz duality also implies that

H,(M,oM;Z/2) = HY(M; Z)2) =~ Z/2,
as M is connected. As 0 is injective, we obtain
Z/2 = Hy(M,0M;Z/2) =im (0) = ker(ix) =0,

which is a contradiction.

Spring 2023, #5 Let M™ — R" be a closed connected submanifold of dimension m.
(a) Show that R™\M™ is connected when m < n — 2.
(b) When m = n — 1 show that R"\M"™ is disconnected by showing that the mod 2 intersection
number L(f, M) = 0 for all smooth maps f : S' — R".

(a) Take two points x,y € R"\M™. Let S = {x,y}. Then consider path f : [0,1] — {x,y} such
that f(0) = aand f(1) = y. It's clear that f|s is vacuously transversal to M" since its image is
{x,y} neither of which are in M. Furthermore, as S is closed, it follows from the transversal
extension theorem that there is a ¢, homotopic to f that is transversal to M with dg = df. We
now claim that ¢ doesn’t intersect M. For if it does, then at the point z € g([0, 1]) n M™ we
have the relationship

dim(T-(f([0,1]) + dim(M) = dim(RR")

However, the LHS is at most m + 1 < n — 1 while the RHS is n so we must have g([0,1]) <
R™\M™, implying we may write g : [0,1] — R"™\M™.
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(b) First we prove the given claim about intersection numbers of maps f : S! — R"™. As R" is
simply connected, we may homotope f to some ¢ : S! — R" such that ¢(S') = p where
p ¢ M. As mod 2 intesection numbers are invariant under homotopy, we have L(f, M) =
Iz(g ’ M) =0.

Suppose that R"\M" is connected. As M is a closed submanifold of dimension m, given
some m € M, there exists some open subset m € U < R" and a chart such that U n M =
{(x1,...,%m,0)}. Then, there exists some € > 0 such that (xq,...,xy,€),(x1,...,xXnm, —€) e U
for some choice of xy,...,x;. Denote these points as p and g respectively. Considering the
path ¢ : [0,1] — R" where

Yo(t) = (x1,..., Xm, (1 —2t)€),

we note that Ir(yg, M) = 1. However, as R"\M" is connected, there exists another path 7;
connecting p and g entirely contained in R"\M. Thus, I>(y1, M) = 0. However, then the loop
Y = 7Yoo 71 has intersection I(y, M) = Ir(yo, M) + LI2(7y1, M) = 1, which is a contradiction,
as desired.

Spring 2023, #6
(a) If X is a finite CW complex and X — X is a path-connected n-fold covering map, then show
that the Euler characteristics are related by the formula

X(X) = nx(X).

b) Let X = X, be a closed genus ¢ surface. What path-connected, closed surfaces can cover
g g 8 p
X?

(a) Given an m-dimensional CW-complex X, one can lift the CW-structure to a CW-structure on
X by lifting the characteristic maps ¢, : D¥ — X to the cover p : X — X, which can be done
since 711(D*) = 0.

If the degree of p is n, there are exactly n lifts of ¢, to Y. So, for each k-cell ¢* in X, there are n
k-cells in the lifted CW-structure on X which are mapped homeomorphically onto e*. Thus,

X(X) =Y (1)'Ci = Y (-1)'nCi = n ) (-1)'C; = nx(X),
i=0 i=0

i=0
where C; is the number of i-cells in X and C; is the number of i-cells in X.

(b) We may construct a CW complex for X with 1 Let X be a path-connected, closed surface of
say genus g’.

Spring 2023, #7 A group G is divisible if for all n, the map g — ¢" from G to itself is surjective.
Show that if X is a path-connected CW-complex and if 711 (X, x) is a divisible group, then the only
path-connected finite cover of X is X itself. (Hint: This can be proven directly or by first showing
that a divisible group has no finite index subgroups.)
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We first prove that 711 (X) = G has no finite index subgroups with index greater than 1. Let H be a
proper subgroup of index n > 1, and let G/H be the set of left cosets of H. Then, G is partitioned
by the left cosets of H, namely,

G=H|[s:H][[H]] ] [8:1H

where ¢1,...,9,-1 ¢ H. Since G is divisible, we can pick k € G so that k" = g;. Then k"H = H
such that g1 = k™ € H, which is a contradiction.

Thus, 711(X) has no finite index subgroups with index greater than 1. Let X Y, X be a path-
connected finite covering space of X. Then, p.(711(X, x)) = 711(X, *) corresponds to a finite index
subgroup of 711(X, x). As the only finite index subgroup of 711 (X, *) is itself, we must have that
p«(111(X, %)) = m1(X, *), implying that X is a 1-sheeted path-connected covering space of X, thus,
X=X. L]

Spring 2023, #8 Let M" be an n-manifold, and consider a small disk D" embedded in M". Show
that the inclusion

M D" — M"

induces an isomorphism on 71 if n > 3 and a surjection if n > 2.

Let M" = M"—D" u D" and S"~! ~ M" — D" n D". Since S"~! is connected, Van Kampen's
theorem tells us f : 77(D") * 7(M" — D" D”) — 711(M") is surjective. However, note that since 77(D")
is simply connected when n > 2, so 7t(D") is the trivial group. Therefore, i, : w(M" — D") —

111 (M") is surjective. To show we have an isomorphism, we just need to show that N which is the
normal subgroup induced by all the cycles of the intersection is trivial. However, the intersection
is $"~! which has trivial fundamental group when 1 > 3. The desired result follows. n

Spring 2023, #9 Find, as a function of n and m, the homology groups

H, (RP"", RP"; Z)

Consider the LES in relative homology for the pair (RP"*™,RP").

We have H;(RP") = 0 foralli > n, and H;(RP") — H;(RP"*™) is an isomorphism for i < m. From
this, it follows that
H:(RP"™™ RP") ~ H;(RP"™™) fori>n+1

and H;(RP"*", RP") = 0 for i < n. Fori = n,n + 1, we have the exact sequence
0 — H, 1 (RP"™™) - H,,1(RP"*",RP") — H,(RP") — H,(RP"*™) — H,(RP"*", RP") — 0.

There are two cases.
Suppose n is even. Then, H,(RP") = 0, thus H;(RP"*",RP") ~ H;(RP"*") for i = m,m + 1.
Suppose n is odd. Then, H,(RP") =~ Z and H,(RP"*") = Z/2Z, and our sequence takes the form

0 — Hyir (RP™™ RPY) — Z 4 Z/2 — H,(RP™™,RP") — 0
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where ¢ is the map induced by inclusion. When we consider the inclusion RP" < RP"*", the
top n-cell of the subspace gets an (1 + 1)-cell attached to it in the larger space via a map of degree
2, and from the cellular chain complex you see that this n-cell that generates H, (RP") =~ Z also
generates H,(RP"*™) =~ Z /2. In other words ¢ is surjective, and therefore H,(RP"*",RP") = 0
and Hy, 1 (RP"™™ RP") = ker(¢) =~ Z.

Spring 2023, #10 Consider the CW-complexes A = §" v §",X = §" x §",and B = §" x [0,1]/ =
x [0, 1], where * is the basepoint of S”. There are inclusions A < X given by the pairs of points
where at least one is the basepoint and A — B which takes one S" to §" x 0 and the other to
S" x 1. Compute the homology of

Y =XuuB

Consider the ‘thickening’ of X and B and call it U and V respectively. Then U n V' deformation
retracts to A. We obtain the LES

-+ = Hpu(A) > Hu(X) @ Hn(B) = Hu(Y) — Hy—1(A) — -
Via Van Kampen we obtain
H,(A) = Ho(S") ® Ha(S") = Z3,,.
Via Kiinneth we obtain
Hy(X) = Hi(S") @ Hi(S") = Z(2n) ®Z},y ® Z ().

Finally, noting that B deformation retracts onto 5", we have® H,(B) = H,(S").

Firstly noting that X and B are path connected and “glued" together, our space Y is path connected.
Thus Hyp(Y) =~ Z.

Case 1: n = 1. In this case, we obtain the sequence
0 — Hy(X) — Hy(Y) — Hi(A) > Hy(X)® H1(B) — Hi(Y) — 0.

Considering the map f : Hj(A) — H;(X) @ Hi(B) induced by the relations on the boundary, we

see that (a,b) — (a,b,a +b). This map is injective, so we have an epi-mono splitat H>(Y) — H;(A),
implying H»(Y) =~ Hp(X) = Z. Additionally, we note that H1(Y) = coker f = Z{a,b,c) /Z{a,b,a+b) =
Z.

Case2:n > 1.
In this case we must consider two portions of our LES. Namely
0 — Hpu(X) — Hau(Y) — 0

and
0 — Hy1(Y) — Hy(A) — Hy(X) ® Hy(B) — Hy(Y) — 0.

8This can also be derived via relative homology.
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The first portion gives us that Hy,(Y) = Hj,(X) = Z. In the second portion, we must analyze
the map, however it is the same map as above; f : H,(A) — H,(X) @ H,(B) is the map in which
(a,b) — (a,b,a +b). As this map is injective, we obtain H,11(Y) = 0 and H,(Y) =~ coker f =~ Z.

Thus, we have
Z k=0,n2n,
0 otherwise.

Hi(Y) = {
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