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A permutation f € S, is a bijection f : [n] — [n], where

nN=1{1,2,....,n}
Let k(f) = #{i | f(i) < i}.
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1 2 B 4 5 6 7 8

But | want the transposition of 1and n to be simple..



Bounded Affine Permutations

For f € Sy, we can associate a bounded affine permutationf : Z — Z
to f such that

1. () = f(i) (mod n)for1<i<n,
2. Y0 f(i)—i = kn,
3.i<f()<i+nforalliez,

4 f(i+n)=f@i)+nforallieZ.

SN\
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For f € Sy, we can associate a bounded affine permutationf : Z — Z
to f such that

1. () = f(i) (mod n)for1<i<n,

2. Y0 f(i)—i = kn,
3.i<f()<i+nforalliez,

4 f(i+n)=f@i)+nforallieZ.

SN\

Let By , denote the set of (k, n)-bounded affine permutations.
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Inversion multiset I'(f)

Resolving crossings.
A0 o D

Inversion Multiset B
The multiset I(f) contains a point y(f{"")) = (k, n — k) for each
inversion (i, ), < j, where f; is the cycle with i after resolving.



Inversion Multiset Example

Here, f = [4,7,5,6,8,9,10], k(f) =
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Inversion Multiset Example

Here, f = [4,7,5,6,8,9,10], k(f) =

AR

r(f) = {(1v1)7 (253)}
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Properties of '(f)

Repetition-Free _ N
When the multiset ['(f) is a set, we call f repetition-free. When I'(f)

contains every lattice points of its convex hull, we call the set I'(f)
CONVex.

Theorem (Galashin-Lam, '21)

The set I'(f) is centrally symmetric and convex. For any centrally
symmetric and convex region I, there exists a repetition-free f such
thatr(f) =T.

Some Generalized Catalan Number
Define C; := # Dyck(I'(f)).

o— °—| o—

o o o

| | |
For fen(i) = i+ R T(f) = 0,50 G, , = # Dycky n = Crn—t:
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Definition ' o ' '
Forw € S,, we say w is k-Grassmannian if w(i) > w(i+1) < i = k.

Example: w = (2,4,5,8,1,3,6,7) is 4-Grassmannian.

Proposition
We have a bijection

{w € Sy |w Rk —Grassmannian} <> {A C k x (n — R) rectangle}

Theorem (Knutson-Lam-Speyer, "13) o
For bounded affine permutations f, we have a bijection

{FIR(f) = R, n(f) = n}
I

{(v,w) € Sy x Sy |wis k — Grassmannian and v < w}



Deograms

Deograms
A (maximal) f-Deodhar diagram (Deogram) for f,is a filling of a

Young tableau of A(w) with crossings, T

', and elbows, \k such that
1. The resulting strand permutation is v.

2. Distinguished. No elbows after an odd number of crossings
(from top-left).

3. Maximal. Contains exactly n — c(f) many elbows, where

c(f) = #cycles of f.

&

1 2 3 4 5

Example Non example
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TNN Grassmannian

Grassmannian
Gr(k,m;R) :={V CR"| dim(V) = R}.

Gr(k,n;R) := {k x n matrices of rank k}/(row operations).

Example

RowSpan ! 0
0 2 1

> € Gr(2,3).

For any f € By, we define a positroid variety M2 C Greo(k, n).

Theorem (Knutson-Lam-Speyer, 2013)
We have a stratification

Gr(k,n)= | | mp.

fe Bk,n
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Positroid Varieties

Theorem (Deodhar, 1985) N
For any field F, we have a decomposition

ne — |_| (]F*)#etbovvs(D) % F(#crossings(D)fé(f))/z.

? =
DeDeoy
Corollary
#ﬂ;([ﬁ‘q) = Z (C] _ '|)#elbOWS(D)q(#crossmgs(D)—é(f))/z.
DeDeoy

Some Positroid Numbers
Define Gy = # Deof™.



Positroid Catalan Numbers

Theorem (Galashin-Lam, '21) N
For 0 < k < n with ged(k,n) =1and f € By , repetition-free,

# Deo™ = # Dyck( (f).
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Positroid Catalan Numbers

Theorem (Galashin-Lam, '21) N
For 0 < k < n with ged(k,n) =1and f € By , repetition-free,

4 Deo}“ax = # Dyck(I'(f)).

4 s 6 7 8 “ s 6 7 8 4 5 & 1 8

T2 3 4 s 12 3 4 5 T2 3 4 s

4 s 6 7 8 L 5 6 7 8 4 5 5 7 8

T2 3 4 s 12 3 4 s

Definition o
Cr = # Deof™ = # Dyck(I'(f)) are the Positroid Catalan Numbers.



We find a bijection!

Theorem (Galashin-Lam, "21) N
For 0 < k < nwith ged(k,n) =1and f € B, repetition-free,
# Deo™ = #t Dyck(T(f)).

However, the proof is non-bijective.



We find a bijection!

Theorem (Galashin-Lam, "21) N
For 0 < k < nwith ged(k,n) =1and f € B, repetition-free,

# Deo™ = # Dyck(T (f)).
However, the proof is non-bijective.

Theorem (M., '25+) N
For 0 < kR < nwith ged(k,n) = 1and f € By, repetition-free, we find

a bijection Deo™ — Dyck(I'(f)).



Dyck Path Recurrence

Let f1,f> the cycles obtained by resolving f ati,i+1, and f/ = sfs;.
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Dyck Path Recurrence

Let f1,f> the cycles obtained by resolving f ati,i+1, and f/ = sfs;.

6 6

Dyck(I'(f)) = Dyck(I'(f1)) -Dyck(I'(f2))  + Dyck(I'(f"))

Goal: Find the same recurrence for Deograms.



Main Tool: Affine Deograms

A (maximal) f-affine Deogram is a periodic filling of the space
between a path P with k up-steps and n — k right steps and its
vertical translate with:

1. Strand permutation equal to f € By,
2. (Distinguished) No elbows after an odd number of crossings,

3. (Maximal) Exactly n — (#cycles of f) elbows (inside4 a red region).
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We let AffDeos p denote the set of f-affine Deograms under P.

Remark _ _ .
These are similar to Affine Pipe Dreams introduced by Snider in 2010.



We let AffDeos p denote the set of f-affine Deograms under P.

Remark _ _ . .
These are similar to Affine Pipe Dreams introduced by Snider in 2010.

For some paths P, we have a bijection Deos — AffDeos p.
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Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper

3. Decoupling
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Box Addition/Removal

Motto: We change our path at index i and move the box up/down
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Box Addition/Removal

Motto: We change our path at index i and move the box up/down

4 5 6 4 5 6

“ 7
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The move Bg is why we need affine Deograms. It has no simple “lift”
to rectangular Deograms.
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Yang-Baxter Moves
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No bijection...
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Yang-Baxter Moves

SiSj+1Si A Si+15iSi4

xf - X
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No bijection...

Bijection if we require Condition 3. (No elbow after an odd number of

crossings) 19



Motto: We cross wires below and locally apply Yang-Baxter moves
until the crossing moves to the top of the path.

20



Motto: We cross wires below and locally apply Yang-Baxter moves
until the crossing moves to the top of the path.

20



Motto: We cross wires below and locally apply Yang-Baxter moves
until the crossing moves to the top of the path.
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Motto: We cross wires below and locally apply Yang-Baxter moves

until the crossing moves to the top of the path.

Yang
-Baxter
Moves

4
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Moves on Affine Deograms

We have 3 moves on f-affine Deograms:
1. Box Addition/Removal
2. Zipper

3. Decoupling

21



Let f = fif,...f- be a decomposition of f € B, , into cycles. Then,

.
# AffDeof"s = | | # AffDeof"3 .

=1
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Let f = fif,...f- be a decomposition of f € B, , into cycles. Then,

.
# AffDeof"s = | | # AffDeof"3 .

=1

We color the wires according to which cycle they are in. We then
restrict ourselves to boxes with the same color.
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Let f = fif,...f- be a decomposition of f € B, , into cycles. Then,

,
# AffDeof"s = | | # AffDeof"3 .
i=1
We color the wires according to which cycle they are in. We then
restrict ourselves to boxes with the same color.

5 6 1
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Dyck Path and (Affine) Deogram Recurrence

Let fy,f> the cycles obtained by resolving f ati,i + 1, and f" = sfs;.
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Dyck(T'(f)) = Dyck('(f1))-Dyck(I'(f2))  + Dyck(I'(f"))
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Let fy,f> the cycles obtained by resolving f ati,i + 1, and f" = sfs;.

6 4 6

Dyck(T'(f)) = Dyck(T'(f1)) -Dyck(T'(f2))  + Dyck(T'(f))
i+1 i+1 i+1
i1+1 i+1 i+1
max . max max max
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Dyck Path and (Affine) Deogram Recurrence

Let fy,f> the cycles obtained by resolving f ati,i + 1, and f' = sfs;.

6 1 6
3
Dyck(T'(f)) = Dyck(D(f1))-Dyck(D(f2))  + Dyck(I'(f"))
i+1 i+1
r’+1 i i
i1 r’+1 /"+1
1
max _ max max max
Deor = Deos ™" - Deoy, + Deog o
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Full Recurrence Example
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Possible directions

Question - _
Can we make this bijection direct?
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Possible directions

Question - _
Can we make this bijection direct?

So far, yes for:
1. Catalan case, i.e, (R, kR +1). (Galashin Lam, '23)

2. 2-row and 2-column case. (M., '25+)

25



Possible directions

Dyck paths carry a lot of statistics.

C}?n qt Z qarea tdmv

DeDyck,, ,

Question o . o
Can we find statistics on Deograms which makes the bijection

statistic-preserving? Can we bijectively prove these statistics are
symmetric?

A=Y >
c‘b(, N A
RS

T2 3 4 5
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Questions?
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Geometric Background

For every f € By, let G; = XT(I'I]?), the toric-equivariant Euler
characteristic of the positroid variety associated to f. Then
Cr = # AffDeos p, when P is the first element of the Grassmannian

necklace for f.

This is also related to
1. Kazhdan-Lusztig R-polynomials,
2. HOMFLY polynomials,

3. Khovanov-Rozansky triply-graded link invariants.
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