Affine Deodhar Diagrams and Rational Dyck Paths

UCLA Combinatorics Forum

Thomas C. Martinez

UC Los Angeles

Let $k(\bar{f}) = \#\{i | \bar{f}(i) < i\}.$

Let $k(\overline{f}) = \#\{i \mid \overline{f}(i) < i\}.$

Let $k(\bar{f}) = \#\{i | \bar{f}(i) < i\}.$

Let $k(\overline{f}) = \#\{i \mid \overline{f}(i) < i\}.$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}.$ Let $k(\overline{f}) = \#\{i | \overline{f}(i) < i\}.$

 $\int -\pi \left(\Gamma \right) \left(0 \right) < 1 \right).$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}$. Let $k(\overline{f}) = \#\{i | \overline{f}(i) < i\}$.

But I want the transposition of 1 and *n* to be simple..

Bounded Affine Permutations

For $\overline{f} \in S_n$, we can associate a **bounded affine permutation** $f : \mathbb{Z} \to \mathbb{Z}$ to \overline{f} such that

1. $f(i) \equiv \overline{f}(i) \pmod{n}$ for $1 \le i \le n$,

2.
$$\sum_{i=1}^{n} f(i) - i = kn$$
,

3. $i \leq f(i) < i + n$ for all $i \in \mathbb{Z}$,

4. f(i+n) = f(i) + n for all $i \in \mathbb{Z}$.

Bounded Affine Permutations

For $\overline{f} \in S_n$, we can associate a **bounded affine permutation** $f : \mathbb{Z} \to \mathbb{Z}$ to \overline{f} such that

1. $f(i) \equiv \overline{f}(i) \pmod{n}$ for $1 \le i \le n$,

2.
$$\sum_{i=1}^{n} f(i) - i = kn$$
,

3. $i \leq f(i) < i + n$ for all $i \in \mathbb{Z}$,

4. f(i+n) = f(i) + n for all $i \in \mathbb{Z}$.

Let $\mathbf{B}_{k,n}$ denote the set of (k, n)-bounded affine permutations.

Overview

 $f \in \mathbf{B}_{k,n}$

Overview

Overview

3

Inversion multiset $\Gamma(f)$

Resolving crossings.

Inversion Multiset

The multiset $\Gamma(f)$ contains a point $\gamma(f_1^{(i,j)}) = (k, n - k)$ for each inversion (i, j), i < j, where f_1 is the cycle with *i* after resolving.

Repetition-Free

When the multiset $\Gamma(f)$ is a set, we call *f* repetition-free. When $\Gamma(f)$ contains every lattice points of its convex hull, we call the set $\Gamma(f)$ convex.

Repetition-Free

When the multiset $\Gamma(f)$ is a set, we call f repetition-free. When $\Gamma(f)$ contains every lattice points of its convex hull, we call the set $\Gamma(f)$ convex.

Theorem (Galashin-Lam, '21)

The set $\Gamma(f)$ is centrally symmetric and convex. For any centrally symmetric and convex region Γ , there exists a repetition-free f such that $\Gamma(f) = \Gamma$.

Repetition-Free

When the multiset $\Gamma(f)$ is a set, we call f repetition-free. When $\Gamma(f)$ contains every lattice points of its convex hull, we call the set $\Gamma(f)$ convex.

Theorem (Galashin-Lam, '21)

The set $\Gamma(f)$ is centrally symmetric and convex. For any centrally symmetric and convex region Γ , there exists a repetition-free f such that $\Gamma(f) = \Gamma$.

Some Generalized Catalan Number Define $C_f := \# \operatorname{Dyck}(\Gamma(f))$.

For $f_{k,n}(i) = i + k$, $\Gamma(f) = \emptyset$, so $C_{f_{k,n}} = \# \operatorname{Dyck}_{k,n-k} = C_{k,n-k}$.

Definitions

Definition

For $w \in S_n$, we say w is k-Grassmannian if $w(i) > w(i+1) \Leftrightarrow i = k$.

Example: w = (2, 4, 5, 8, 1, 3, 6, 7) is 4-Grassmannian.

Definitions

Definition For $w \in S_n$, we say w is k-Grassmannian if $w(i) > w(i + 1) \Leftrightarrow i = k$.

Example: w = (2, 4, 5, 8, 1, 3, 6, 7) is 4-Grassmannian.

Proposition We have a bijection

 $\{w \in S_n \mid w \mid k - Grassmannian\} \leftrightarrow \{\lambda \subseteq k \times (n - k) \text{ rectangle}\}$

Definitions

Definition

For $w \in S_n$, we say w is k-Grassmannian if $w(i) > w(i+1) \Leftrightarrow i = k$.

```
Example: w = (2, 4, 5, 8, 1, 3, 6, 7) is 4-Grassmannian.
```

Proposition We have a bijection

 $\{w \in S_n \mid w \mid k - Grassmannian\} \leftrightarrow \{\lambda \subseteq k \times (n - k) \text{ rectangle}\}$

Theorem (Knutson-Lam-Speyer, '13) For bounded affine permutations *f* , we have a bijection

$$\{f \mid k(f) = k, n(f) = n\}$$

$$(v, w) \in S_n \times S_n \mid w \text{ is } k - \text{Grassmannian and } v \le w\}$$

Deograms

Deograms

A (maximal) *f*-Deodhar diagram (Deogram) for *f*, is a filling of a Young tableau of $\lambda(w)$ with crossings, \boxplus , and elbows, \mathbb{N} , such that

- 1. The resulting strand permutation is v.
- 2. **Distinguished.** No elbows after an odd number of crossings (from top-left).
- 3. Maximal. Contains exactly n c(f) many elbows, where c(f) = #cycles of f.

Grassmannian Gr $(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid \dim(V) = k\}.$ Grassmannian

 $Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$ $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(row operations).$ **Grassmannian** $Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid \dim(V) = k\}.$ $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr(2,3).$$

Grassmannian

 $Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$ $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(row operations).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr(2,3).$$

For any $f \in \mathbf{B}_{k,n}$, we define a **positroid variety** $\Pi_{f}^{\circ} \subseteq \operatorname{Gr}_{\geq 0}(k, n)$.

Theorem (Knutson-Lam-Speyer, 2013) We have a stratification

$$\operatorname{Gr}(k,n) = \bigsqcup_{f \in \mathbf{B}_{k,n}} \Pi_f^{\circ}.$$

Theorem (Deodhar, 1985) For any field $\mathbb F,$ we have a decomposition

$$\Pi_{f}^{\circ} = \bigsqcup_{D \in \mathsf{Deo}_{f}} (\mathbb{F}^{*})^{\#\mathsf{elbows}(D)} \times \mathbb{F}^{(\#\mathsf{crossings}(D) - \ell(f))/2}.$$

Theorem (Deodhar, 1985) For any field \mathbb{F} , we have a decomposition

$$\Pi_{f}^{\circ} = \bigsqcup_{D \in \mathsf{Deo}_{f}} (\mathbb{F}^{*})^{\#\mathsf{elbows}(D)} \times \mathbb{F}^{(\#\mathsf{crossings}(D) - \ell(f))/2}.$$

Corollary

$$\#\Pi_f^{\circ}(\mathbb{F}_q) = \sum_{D \in \mathsf{Deo}_f} (q-1)^{\#\mathsf{elbows}(D)} q^{(\#\mathsf{crossings}(D) - \ell(f))/2}$$
Theorem (Deodhar, 1985) For any field \mathbb{F} , we have a decomposition

$$\Pi_{f}^{\circ} = \bigsqcup_{D \in \mathsf{Deo}_{f}} (\mathbb{F}^{*})^{\#\mathsf{elbows}(D)} \times \mathbb{F}^{(\#\mathsf{crossings}(D) - \ell(f))/2}.$$

Corollary

$$\#\Pi_{f}^{\circ}(\mathbb{F}_{q}) = \sum_{D \in \mathsf{Deo}_{f}} (q-1)^{\#\mathsf{elbows}(D)} q^{(\#\mathsf{crossings}(D) - \ell(f))/2}$$

Some Positroid Numbers Define $C_f = \# \operatorname{Deo}_f^{\max}$.

Positroid Catalan Numbers

Theorem (Galashin-Lam, '21) For 0 < k < n with gcd(k, n) = 1 and $f \in \mathbf{B}_{k,n}$ repetition-free, $\# \operatorname{Deo}_{f}^{max} = \# \operatorname{Dyck}(\Gamma(f)).$

Positroid Catalan Numbers

Theorem (Galashin-Lam, '21) For 0 < k < n with gcd(k, n) = 1 and $f \in \mathbf{B}_{k,n}$ repetition-free, $\# \operatorname{Deo}_{f}^{max} = \# \operatorname{Dyck}(\Gamma(f)).$

Definition $C_f = \# \operatorname{Deo}_f^{\max} = \# \operatorname{Dyck}(\Gamma(f))$ are the **Positroid Catalan Numbers**. Theorem (Galashin-Lam, '21) For 0 < k < n with gcd(k, n) = 1 and $f \in B_{k,n}$ repetition-free, $\# \operatorname{Deo}_{f}^{\max} = \# \operatorname{Dyck}(\Gamma(f)).$

However, the proof is non-bijective.

Theorem (Galashin-Lam, '21) For 0 < k < n with gcd(k, n) = 1 and $f \in B_{k,n}$ repetition-free, $\# \operatorname{Deo}_{f}^{\max} = \# \operatorname{Dyck}(\Gamma(f)).$

However, the proof is non-bijective.

Theorem (M., '25+) For 0 < k < n with gcd(k, n) = 1 and $f \in B_{k,n}$ repetition-free, we find a bijection $Deo_f^{max} \rightarrow Dyck(\Gamma(f))$.

Let f_1, f_2 the cycles obtained by resolving f at i, i + 1, and $f' = s_i f s_i$.

Let f_1, f_2 the cycles obtained by resolving f at i, i + 1, and $f' = s_i f s_i$.

Goal: Find the same recurrence for Deograms.

Main Tool: Affine Deograms

A (maximal) f-affine Deogram is a *periodic filling* of the space between a path P with k up-steps and n - k right steps and its vertical translate with:

- 1. Strand permutation equal to $f \in \mathbf{B}_{k,n}$,
- 2. (Distinguished) No elbows after an odd number of crossings,
- 3. (Maximal) Exactly n (# cycles of f) elbows (inside a red region).

We let $AffDeo_{f,P}$ denote the set of f-affine Deograms under P.

Remark

These are similar to Affine Pipe Dreams introduced by Snider in 2010.

We let $AffDeo_{f,P}$ denote the set of f-affine Deograms under P.

Remark

These are similar to Affine Pipe Dreams introduced by Snider in 2010.

For some paths P, we have a bijection $Deo_f \rightarrow Aff Deo_{f,P}$.

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Box Addition/Removal

Motto: We change our path at index *i* and move the box up/down

Box Addition/Removal

Motto: We change our path at index *i* and move the box up/down

Box Addition/Removal

Motto: We change our path at index *i* and move the box up/down

The move B_0 is why we need affine Deograms. It has no simple "lift" to rectangular Deograms.

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Yang-Baxter Moves

No bijection...

Yang-Baxter Moves

No bijection...

Bijection if we require Condition 3. (No elbow after an odd number of crossings)

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Let $f = f_1 f_2 \dots f_r$ be a decomposition of $f \in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P}^{\max} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}^{\max}.$$

Let $f = f_1 f_2 \dots f_r$ be a decomposition of $f \in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P}^{\max} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}^{\max}.$$

We color the wires according to which cycle they are in. We then restrict ourselves to boxes with the same color.

Let $f = f_1 f_2 \dots f_r$ be a decomposition of $f \in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P}^{\max} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}^{\max}.$$

We color the wires according to which cycle they are in. We then restrict ourselves to boxes with the same color.

Dyck Path and (Affine) Deogram Recurrence

=

Let f_1, f_2 the cycles obtained by resolving f at i, i + 1, and $f' = s_i f s_i$.

 $\operatorname{Dyck}(\Gamma(f))$

 $\operatorname{Dyck}(\Gamma(f_1)) \cdot \operatorname{Dyck}(\Gamma(f_2))$

 $\operatorname{Dyck}(\Gamma(f'))$

+

Dyck Path and (Affine) Deogram Recurrence

=

Let f_1, f_2 the cycles obtained by resolving f at i, i + 1, and $f' = s_i f s_i$.

 $Dyck(\Gamma(f))$

 $\operatorname{Dyck}(\Gamma(f_1)) \cdot \operatorname{Dyck}(\Gamma(f_2))$

 $\operatorname{Dyck}(\Gamma(f'))$

+

+

Dyck Path and (Affine) Deogram Recurrence

=

=

Let f_1, f_2 the cycles obtained by resolving f at i, i + 1, and $f' = s_i f s_i$.

 $Dyck(\Gamma(f))$

 $\mathrm{Dyck}(\Gamma(f_1)) \cdot \mathrm{Dyck}(\Gamma(f_2))$

 $\operatorname{Dyck}(\Gamma(f'))$

 $^+$

+

 Z_2

{}B₄

2 3 4

1

Z2

_,B₄

Z2

_,B₄

Z2

,B4

 \rightarrow

Question Can we make this bijection direct?

Question Can we make this bijection direct?

So far, yes for:

- 1. Catalan case, i.e., (k, k + 1). (Galashin Lam, '23)
- 2. 2-row and 2-column case. (M., '25+)

Dyck paths carry a lot of statistics.

$$C_{k,n}(q,t) = \sum_{D \in \text{Dyck}_{k,n}} q^{\text{area}(D)} t^{\text{dinv}(D)}.$$

Question

Can we find statistics on Deograms which makes the bijection statistic-preserving? Can we bijectively prove these statistics are symmetric?

Questions?

For every $f \in \mathbf{B}_{k,n}$, let $C_f = \chi_T(\Pi_f^\circ)$, the toric-equivariant Euler characteristic of the positroid variety associated to f. Then $C_f = \# \operatorname{AffDeo}_{f,P}$, when P is the first element of the Grassmannian necklace for f.

This is also related to

- 1. Kazhdan-Lusztig R-polynomials,
- 2. HOMFLY polynomials,
- 3. Khovanov-Rozansky triply-graded link invariants.